C Martin, Frenkel-Pinter Moran, Smith Kelvin H, Rivera-Santana Victor F, Sargon Alyssa B, Jacobson Kaitlin C, Guzman-Martinez Aikomari, Williams Loren Dean, Leman Luke J, Liotta Charles L, Grover Martha A, Hud Nicholas V
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States.
JACS Au. 2022 May 17;2(6):1395-1404. doi: 10.1021/jacsau.2c00087. eCollection 2022 Jun 27.
The high kinetic barrier to amide bond formation has historically placed narrow constraints on its utility in reversible chemistry applications. Slow kinetics has limited the use of amides for the generation of diverse combinatorial libraries and selection of target molecules. Current strategies for peptide-based dynamic chemistries require the use of nonpolar co-solvents or catalysts or the incorporation of functional groups that facilitate dynamic chemistry between peptides. In light of these limitations, we explored the use of depsipeptides: biorelevant copolymers of amino and hydroxy acids that would circumvent the challenges associated with dynamic peptide chemistry. Here, we describe a model system of -(α-hydroxyacyl)-amino acid building blocks that reversibly polymerize to form depsipeptides when subjected to two-step evaporation-rehydration cycling under moderate conditions. The hydroxyl groups of these units allow for dynamic ester chemistry between short peptide segments through unmodified carboxyl termini. Selective recycling of building blocks is achieved by exploiting the differential hydrolytic lifetimes of depsipeptide amide and ester bonds, which we show are controllable by adjusting the solution pH, temperature, and time as well as the building blocks' side chains. We demonstrate that the polymerization and breakdown of the depsipeptides are facilitated by cyclic morpholinedione intermediates, and further show how structural properties dictate half-lives and product oligomer distributions using multifunctional building blocks. These results establish a cyclic mode of ester-based reversible depsipeptide formation that temporally separates the polymerization and depolymerization steps for the building blocks and may have implications for prebiotic polymer chemical evolution.
酰胺键形成的高动力学屏障在历史上对其在可逆化学应用中的效用施加了严格限制。缓慢的动力学限制了酰胺在生成多样的组合文库和筛选目标分子方面的应用。基于肽的动态化学的当前策略需要使用非极性共溶剂或催化剂,或者引入有助于肽之间动态化学的官能团。鉴于这些限制,我们探索了使用缩肽:氨基酸和羟基酸的生物相关共聚物,它可以规避与动态肽化学相关的挑战。在此,我们描述了一种由 -(α-羟基酰基)-氨基酸构建块组成的模型体系,该体系在适度条件下经过两步蒸发-再水化循环时会可逆地聚合形成缩肽。这些单元的羟基通过未修饰的羧基末端允许短肽段之间进行动态酯化学。通过利用缩肽酰胺键和酯键不同的水解寿命实现构建块的选择性循环利用,我们表明可以通过调节溶液的pH值、温度、时间以及构建块的侧链来控制水解寿命。我们证明缩肽的聚合和解聚由环状吗啉二酮中间体促进,并进一步展示了使用多功能构建块时结构性质如何决定半衰期和产物低聚物分布。这些结果建立了基于酯的可逆缩肽形成的循环模式,该模式在时间上分离了构建块的聚合和解聚步骤,可能对前生物聚合物化学进化具有重要意义。