Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
Nat Commun. 2020 Aug 28;11(1):4321. doi: 10.1038/s41467-020-18063-x.
Bacterial colonization of the human intestine requires firm adhesion of bacteria to insoluble substrates under hydrodynamic flow. Here we report the molecular mechanism behind an ultrastable protein complex responsible for resisting shear forces and adhering bacteria to cellulose fibers in the human gut. Using single-molecule force spectroscopy (SMFS), single-molecule FRET (smFRET), and molecular dynamics (MD) simulations, we resolve two binding modes and three unbinding reaction pathways of a mechanically ultrastable R. champanellensis (Rc) Dockerin:Cohesin (Doc:Coh) complex. The complex assembles in two discrete binding modes with significantly different mechanical properties, with one breaking at ~500 pN and the other at ~200 pN at loading rates from 1-100 nN s. A neighboring X-module domain allosterically regulates the binding interaction and inhibits one of the low-force pathways at high loading rates, giving rise to a catch bonding mechanism that manifests under force ramp protocols. Multi-state Monte Carlo simulations show strong agreement with experimental results, validating the proposed kinetic scheme. These results explain mechanistically how gut microbes regulate cell adhesion strength at high shear stress through intricate molecular mechanisms including dual-binding modes, mechanical allostery and catch bonds.
人类肠道中的细菌定殖需要细菌在水动力流下牢固地黏附于不溶性基质。在这里,我们报告了一个超稳定蛋白复合物的分子机制,该复合物负责抵抗剪切力,并将细菌黏附到人类肠道中的纤维素纤维上。使用单分子力谱(SMFS)、单分子荧光共振能量转移(smFRET)和分子动力学(MD)模拟,我们解析了两种结合模式和三种解缚反应途径的超稳定 R. champanellensis(Rc)Dockerin:Cohesin(Doc:Coh)复合物。该复合物以两种具有显著不同力学性能的离散结合模式组装,其中一种在加载速率为 1-100 nN s 时在约 500 pN 处断裂,另一种在约 200 pN 处断裂。相邻的 X 模块域变构调节结合相互作用,并在高加载速率下抑制一种低力途径,从而产生一种在力斜坡协议下表现出的捕获键合机制。多态蒙特卡罗模拟与实验结果具有很强的一致性,验证了所提出的动力学方案。这些结果从机制上解释了肠道微生物如何通过复杂的分子机制,包括双结合模式、力学变构和捕获键,在高剪切应力下调节细胞黏附强度。