Suppr超能文献

组蛋白甲基化是[具体物种]的毒力、分生孢子形成和多重胁迫抗性所必需的。

Histone Methylation Is Required for Virulence, Conidiation, and Multi-Stress Resistance of .

作者信息

Meng Shuai, Huang Suya, Liu Jinhua, Gai Yunpeng, Li Min, Duan Shuo, Zhang Shuting, Sun Xuepeng, Yang Qi, Wang Yuchun, Xu Kai, Ma Haijie

机构信息

Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China.

Natural Medicine Institute of Zhejiang YangShengTang Co., LTD, Hangzhou, China.

出版信息

Front Microbiol. 2022 Jun 16;13:924476. doi: 10.3389/fmicb.2022.924476. eCollection 2022.

Abstract

Histone methylation, which is critical for transcriptional regulation and various biological processes in eukaryotes, is a reversible dynamic process regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs). This study determined the function of 5 HMTs (, , , , and ) and 1 HDMs () in the phytopathogenic fungus by analyzing targeted gene deletion mutants. The vegetative growth, conidiation, and pathogenicity of ∆ and ∆ were severely inhibited indicating that and play critical roles in cell development in . Multiple stresses analysis revealed that both and were involved in the adaptation to cell wall interference agents and osmotic stress. Meanwhile, ∆ and ∆ displayed serious vegetative growth defects in sole carbon source medium, indicating that and play an important role in carbon source utilization. In addition, ∆ colony displayed white in color, while the wild-type colony was dark brown, indicating is an essential gene for melanin biosynthesis in . was required for the resistance to oxidative stress. On the other hand, all of ∆, ∆, and ∆ mutants displayed wild-type phenotype in vegetative growth, multi-stress resistance, pathogenicity, carbon source utilization, and melanin biosynthesis. To explore the regulatory mechanism of and , RNA-seq of these mutants and wild-type strain was performed. Phenotypes mentioned above correlated well with the differentially expressed genes in ∆ and ∆ according to the KEGG and GO enrichment results. Overall, our study provides genetic evidence that defines the central role of HMTs and HDMs in the pathological and biological functions of .

摘要

组蛋白甲基化对真核生物的转录调控和各种生物学过程至关重要,是一个由组蛋白甲基转移酶(HMTs)和组蛋白去甲基化酶(HDMs)调控的可逆动态过程。本研究通过分析靶向基因缺失突变体,确定了5种HMTs(,,,,和)和1种HDMs()在植物病原真菌中的功能。∆和∆的营养生长、分生孢子形成和致病性受到严重抑制,表明和在的细胞发育中起关键作用。多重胁迫分析表明,和都参与了对细胞壁干扰剂和渗透胁迫的适应。同时,∆和∆在单一碳源培养基中表现出严重的营养生长缺陷,表明和在碳源利用中起重要作用。此外,∆菌落呈白色,而野生型菌落为深褐色,表明是中黑色素生物合成的必需基因。对氧化应激的抗性需要。另一方面,所有∆、∆和∆突变体在营养生长、多重胁迫抗性、致病性、碳源利用和黑色素生物合成方面均表现出野生型表型。为了探究和的调控机制,对这些突变体和野生型菌株进行了RNA测序。根据KEGG和GO富集结果,上述表型与∆和∆中差异表达基因密切相关。总体而言,我们的研究提供了遗传学证据,定义了HMTs和HDMs在的病理和生物学功能中的核心作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d289/9245015/ed15cb009b94/fmicb-13-924476-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验