Suppr超能文献

冰核蛋白的结构与蛋白质-蛋白质相互作用决定其活性。

Structure and Protein-Protein Interactions of Ice Nucleation Proteins Drive Their Activity.

作者信息

Hartmann Susan, Ling Meilee, Dreyer Lasse S A, Zipori Assaf, Finster Kai, Grawe Sarah, Jensen Lasse Z, Borck Stella, Reicher Naama, Drace Taner, Niedermeier Dennis, Jones Nykola C, Hoffmann Søren V, Wex Heike, Rudich Yinon, Boesen Thomas, Šantl-Temkiv Tina

机构信息

Institute for Tropospheric Research, Leipzig, Germany.

Department of Biology, Microbiology Section, Aarhus University, Aarhus, Denmark.

出版信息

Front Microbiol. 2022 Jun 17;13:872306. doi: 10.3389/fmicb.2022.872306. eCollection 2022.

Abstract

Microbially-produced ice nucleating proteins (INpro) are unique molecular structures with the highest known catalytic efficiency for ice formation. Airborne microorganisms utilize these proteins to enhance their survival by reducing their atmospheric residence times. INpro also have critical environmental effects including impacts on the atmospheric water cycle, through their role in cloud and precipitation formation, as well as frost damage on crops. INpro are ubiquitously present in the atmosphere where they are emitted from diverse terrestrial and marine environments. Even though bacterial genes encoding INpro have been discovered and sequenced decades ago, the details of how the INpro molecular structure and oligomerization foster their unique ice-nucleation activity remain elusive. Using machine-learning based software AlphaFold 2 and trRosetta, we obtained and analysed the first structural models of full length and truncated versions of bacterial INpro. The modeling revealed a novel beta-helix structure of the INpro central repeat domain responsible for ice nucleation activity. This domain consists of repeated stacks of two beta strands connected by two sharp turns. One beta-strand is decorated with a TxT amino acid sequence motif and the other strand has an SxL[T/I] motif. The core formed between the stacked beta helix-pairs is unusually polar and very distinct from previous INpro models. Using synchrotron radiation circular dichroism, we validated the β-strand content of the central repeat domain in the model. Combining the structural model with functional studies of purified recombinant INpro, electron microscopy and modeling, we further demonstrate that the formation of dimers and higher-order oligomers is key to INpro activity. Using computational docking of the new INpro model based on rigid-body algorithms we could reproduce a previously proposed homodimer structure of the INpro CRD with an interface along a highly conserved tyrosine ladder and show that the dimer model agrees with our functional data. The parallel dimer structure creates a surface where the TxT motif of one monomer aligns with the SxL[T/I] motif of the other monomer widening the surface that interacts with water molecules and therefore enhancing the ice nucleation activity. This work presents a major advance in understanding the molecular foundation for bacterial ice-nucleation activity.

摘要

微生物产生的冰核蛋白(INpro)是独特的分子结构,具有已知最高的冰形成催化效率。空气中的微生物利用这些蛋白质来减少其在大气中的停留时间,从而提高它们的存活率。INpro还具有关键的环境影响,包括通过其在云形成和降水形成中的作用对大气水循环产生影响,以及对作物造成霜冻损害。INpro普遍存在于大气中,它们从各种陆地和海洋环境中排放出来。尽管几十年前就已发现并测序了编码INpro的细菌基因,但INpro分子结构和寡聚化如何促进其独特的冰核活性的细节仍然难以捉摸。使用基于机器学习的软件AlphaFold 2和trRosetta,我们获得并分析了细菌INpro全长和截短版本的首个结构模型。建模揭示了负责冰核活性的INpro中央重复结构域的一种新型β-螺旋结构。该结构域由通过两个急转弯连接的两个β链的重复堆叠组成。一条β链装饰有TxT氨基酸序列基序,另一条链具有SxL[T/I]基序。堆叠的β螺旋对之间形成的核心具有异常的极性,与以前的INpro模型非常不同。使用同步辐射圆二色性,我们验证了模型中中央重复结构域的β链含量。将结构模型与纯化的重组INpro的功能研究、电子显微镜和建模相结合,我们进一步证明二聚体和高阶寡聚体的形成是INpro活性的关键。使用基于刚体算法的新INpro模型的计算对接,我们可以重现先前提出的INpro CRD的同型二聚体结构,其界面沿着高度保守的酪氨酸阶梯,并表明二聚体模型与我们的功能数据一致。平行二聚体结构创建了一个表面,其中一个单体的TxT基序与另一个单体的SxL[T/I]基序对齐,拓宽了与水分子相互作用的表面,从而增强了冰核活性。这项工作在理解细菌冰核活性的分子基础方面取得了重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9491/9247515/8f0706c736f1/fmicb-13-872306-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验