Suppr超能文献

大豆育种流程中种子蛋白质候选基因的鉴定与基因组选择

Identification of Candidate Genes and Genomic Selection for Seed Protein in Soybean Breeding Pipeline.

作者信息

Qin Jun, Wang Fengmin, Zhao Qingsong, Shi Ainong, Zhao Tiantian, Song Qijian, Ravelombola Waltram, An Hongzhou, Yan Long, Yang Chunyan, Zhang Mengchen

机构信息

National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China.

Department of Horticulture, University of Arkansas, Fayetteville, AR, United States.

出版信息

Front Plant Sci. 2022 Jun 16;13:882732. doi: 10.3389/fpls.2022.882732. eCollection 2022.

Abstract

Soybean is a primary meal protein for human consumption, poultry, and livestock feed. In this study, quantitative trait locus (QTL) controlling protein content was explored genome-wide association studies (GWAS) and linkage mapping approaches based on 284 soybean accessions and 180 recombinant inbred lines (RILs), respectively, which were evaluated for protein content for 4 years. A total of 22 single nucleotide polymorphisms (SNPs) associated with protein content were detected using mixed linear model (MLM) and general linear model (GLM) methods in Tassel and 5 QTLs using Bayesian interval mapping (IM), single-trait multiple interval mapping (SMIM), single-trait composite interval mapping maximum likelihood estimation (SMLE), and single marker regression (SMR) models in Q-Gene and IciMapping. Major QTLs were detected on chromosomes 6 and 20 in both populations. The new QTL genomic region on chromosome 6 (Chr6_18844283-19315351) included 7 candidate genes and the Hap.X at the Chr6_19172961 position was associated with high protein content. Genomic selection (GS) of protein content was performed using Bayesian Lasso (BL) and ridge regression best linear unbiased prediction (rrBULP) based on all the SNPs and the SNPs significantly associated with protein content resulted from GWAS. The results showed that BL and rrBLUP performed similarly; GS accuracy was dependent on the SNP set and training population size. GS efficiency was higher for the SNPs derived from GWAS than random SNPs and reached a plateau when the number of markers was >2,000. The SNP markers identified in this study and other information were essential in establishing an efficient marker-assisted selection (MAS) and GS pipelines for improving soybean protein content.

摘要

大豆是人类食用、家禽和家畜饲料的主要粕类蛋白。在本研究中,分别基于284份大豆种质和180个重组自交系(RIL),采用全基因组关联研究(GWAS)和连锁图谱构建方法,对控制蛋白质含量的数量性状位点(QTL)进行了探索,这些材料的蛋白质含量经过了4年的评估。在Tassel中使用混合线性模型(MLM)和一般线性模型(GLM)方法共检测到22个与蛋白质含量相关的单核苷酸多态性(SNP),在Q-Gene和IciMapping中使用贝叶斯区间作图(IM)、单性状多区间作图(SMIM)、单性状复合区间作图最大似然估计(SMLE)和单标记回归(SMR)模型检测到5个QTL。在两个群体的6号和20号染色体上均检测到主要QTL。6号染色体上新的QTL基因组区域(Chr6_18844283-19315351)包含7个候选基因,Chr6_19172961位置的单倍型X与高蛋白含量相关。基于所有SNP以及GWAS产生的与蛋白质含量显著相关的SNP,使用贝叶斯套索(BL)和岭回归最佳线性无偏预测(rrBULP)对蛋白质含量进行基因组选择(GS)。结果表明,BL和rrBLUP表现相似;GS准确性取决于SNP集和训练群体大小。来自GWAS的SNP的GS效率高于随机SNP,当标记数量>2000时达到平台期。本研究中鉴定的SNP标记和其他信息对于建立提高大豆蛋白质含量的高效标记辅助选择(MAS)和GS流程至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef64/9244705/79cacddc1642/fpls-13-882732-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验