Suppr超能文献

3D-GBS:一种用于基因组选择以及在中小型基因组物种中进行其他高通量低成本应用的通用测序基因分型方法。

3D-GBS: a universal genotyping-by-sequencing approach for genomic selection and other high-throughput low-cost applications in species with small to medium-sized genomes.

作者信息

de Ronne Maxime, Légaré Gaétan, Belzile François, Boyle Brian, Torkamaneh Davoud

机构信息

Département de Phytologie, Université Laval, Quebec, Canada.

Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada.

出版信息

Plant Methods. 2023 Feb 5;19(1):13. doi: 10.1186/s13007-023-00990-7.

Abstract

Despite the increased efficiency of sequencing technologies and the development of reduced-representation sequencing (RRS) approaches allowing high-throughput sequencing (HTS) of multiplexed samples, the per-sample genotyping cost remains the most limiting factor in the context of large-scale studies. For example, in the context of genomic selection (GS), breeders need genome-wide markers to predict the breeding value of large cohorts of progenies, requiring the genotyping of thousands candidates. Here, we introduce 3D-GBS, an optimized GBS procedure, to provide an ultra-high-throughput and ultra-low-cost genotyping solution for species with small to medium-sized genome and illustrate its use in soybean. Using a combination of three restriction enzymes (PstI/NsiI/MspI), the portion of the genome that is captured was reduced fourfold (compared to a "standard" ApeKI-based protocol) while reducing the number of markers by only 40%. By better focusing the sequencing effort on limited set of restriction fragments, fourfold more samples can be genotyped at the same minimal depth of coverage. This GBS protocol also resulted in a lower proportion of missing data and provided a more uniform distribution of SNPs across the genome. Moreover, we investigated the optimal number of reads per sample needed to obtain an adequate number of markers for GS and QTL mapping (500-1000 markers per biparental cross). This optimization allows sequencing costs to be decreased by ~ 92% and ~ 86% for GS and QTL mapping studies, respectively, compared to previously published work. Overall, 3D-GBS represents a unique and affordable solution for applications requiring extremely high-throughput genotyping where cost remains the most limiting factor.

摘要

尽管测序技术的效率有所提高,且简化代表性测序(RRS)方法的发展使得多重样本的高通量测序(HTS)成为可能,但在大规模研究中,每个样本的基因分型成本仍然是最具限制的因素。例如,在基因组选择(GS)的背景下,育种者需要全基因组标记来预测大量后代群体的育种价值,这就需要对数千个候选个体进行基因分型。在此,我们引入了3D-GBS,这是一种优化的GBS程序,旨在为中小型基因组的物种提供超高通量和超低成本的基因分型解决方案,并展示其在大豆中的应用。通过组合使用三种限制性内切酶(PstI/NsiI/MspI),捕获的基因组部分减少了四倍(与基于“ApeKI标准”的方案相比),同时标记数量仅减少了40%。通过将测序工作更好地集中在有限的一组限制性片段上,在相同的最小覆盖深度下,可以对四倍数量的样本进行基因分型。这种GBS方案还导致缺失数据的比例更低,并在全基因组范围内提供了更均匀的单核苷酸多态性(SNP)分布。此外,我们研究了每个样本所需的最佳读取数,以获得足够数量的用于GS和数量性状基因座(QTL)定位的标记(每个双亲杂交500-1000个标记)。与先前发表的工作相比,这种优化分别使GS和QTL定位研究的测序成本降低了约92%和约86%。总体而言,对于成本仍然是最具限制因素的极高通量基因分型应用,3D-GBS代表了一种独特且经济实惠的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a652/9899395/b603e489aae0/13007_2023_990_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验