Suppr超能文献

使用深度显著性胶囊和预训练深度学习框架对肺癌进行早期预测。

Early Prediction of Lung Cancers Using Deep Saliency Capsule and Pre-Trained Deep Learning Frameworks.

作者信息

Ramana Kadiyala, Kumar Madapuri Rudra, Sreenivasulu K, Gadekallu Thippa Reddy, Bhatia Surbhi, Agarwal Parul, Idrees Sheikh Mohammad

机构信息

Department of Information Technology (IT), Chaitanya Bharathi Institute of Technology, Hyderabad, India.

Department of Computer Science and Engineering (CSE), G. Pullaiah College of Engineering and Technology, Kurnool, India.

出版信息

Front Oncol. 2022 Jun 17;12:886739. doi: 10.3389/fonc.2022.886739. eCollection 2022.

Abstract

Lung cancer is the cellular fission of abnormal cells inside the lungs that leads to 72% of total deaths worldwide. Lung cancer are also recognized to be one of the leading causes of mortality, with a chance of survival of only 19%. Tumors can be diagnosed using a variety of procedures, including X-rays, CT scans, biopsies, and PET-CT scans. From the above techniques, Computer Tomography (CT) scan technique is considered to be one of the most powerful tools for an early diagnosis of lung cancers. Recently, machine and deep learning algorithms have picked up peak energy, and this aids in building a strong diagnosis and prediction system using CT scan images. But achieving the best performances in diagnosis still remains on the darker side of the research. To solve this problem, this paper proposes novel saliency-based capsule networks for better segmentation and employs the optimized pre-trained transfer learning for the better prediction of lung cancers from the input CT images. The integration of capsule-based saliency segmentation leads to the reduction and eventually reduces the risk of computational complexity and overfitting problem. Additionally, hyperparameters of pretrained networks are tuned by the whale optimization algorithm to improve the prediction accuracy by sacrificing the complexity. The extensive experimentation carried out using the LUNA-16 and LIDC Lung Image datasets and various performance metrics such as accuracy, precision, recall, specificity, and F1-score are evaluated and analyzed. Experimental results demonstrate that the proposed framework has achieved the peak performance of 98.5% accuracy, 99.0% precision, 98.8% recall, and 99.1% F1-score and outperformed the DenseNet, AlexNet, Resnets-50, Resnets-100, VGG-16, and Inception models.

摘要

肺癌是肺部异常细胞的细胞分裂,导致全球72%的总死亡人数。肺癌也被认为是主要的死亡原因之一,存活率仅为19%。肿瘤可以通过多种程序进行诊断,包括X光、CT扫描、活检和PET-CT扫描。在上述技术中,计算机断层扫描(CT)扫描技术被认为是早期诊断肺癌最强大的工具之一。最近,机器和深度学习算法达到了顶峰,这有助于使用CT扫描图像构建强大的诊断和预测系统。但在诊断中实现最佳性能仍处于研究的较难方面。为了解决这个问题,本文提出了基于显著特征的新型胶囊网络以实现更好的分割,并采用优化的预训练迁移学习从输入的CT图像中更好地预测肺癌。基于胶囊的显著特征分割的整合导致计算复杂度降低,并最终降低了过拟合问题的风险。此外,通过鲸鱼优化算法调整预训练网络的超参数,以在牺牲复杂度的情况下提高预测准确性。使用LUNA-16和LIDC肺部图像数据集进行了广泛的实验,并评估和分析了各种性能指标,如准确率、精确率、召回率、特异性和F1分数。实验结果表明,所提出的框架实现了98.5%的准确率、99.0%的精确率、98.8%的召回率和99.1%的F1分数的峰值性能,并且优于DenseNet、AlexNet、Resnets-50、Resnets-100、VGG-16和Inception模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/775c/9247339/a0d426ffa630/fonc-12-886739-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验