Suppr超能文献

FLED-Block:用于 COVID-19 预测的联邦学习集成深度学习区块链模型。

FLED-Block: Federated Learning Ensembled Deep Learning Blockchain Model for COVID-19 Prediction.

机构信息

Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Chennai, India.

出版信息

Front Public Health. 2022 Jun 17;10:892499. doi: 10.3389/fpubh.2022.892499. eCollection 2022.

Abstract

With the SARS-CoV-2's exponential growth, intelligent and constructive practice is required to diagnose the COVID-19. The rapid spread of the virus and the shortage of reliable testing models are considered major issues in detecting COVID-19. This problem remains the peak burden for clinicians. With the advent of artificial intelligence (AI) in image processing, the burden of diagnosing the COVID-19 cases has been reduced to acceptable thresholds. But traditional AI techniques often require centralized data storage and training for the predictive model development which increases the computational complexity. The real-world challenge is to exchange data globally across hospitals while also taking into account of the organizations' privacy concerns. Collaborative model development and privacy protection are critical considerations while training a global deep learning model. To address these challenges, this paper proposes a novel framework based on blockchain and the federated learning model. The federated learning model takes care of reduced complexity, and blockchain helps in distributed data with privacy maintained. More precisely, the proposed federated learning ensembled deep five learning blockchain model (FLED-Block) framework collects the data from the different medical healthcare centers, develops the model with the hybrid capsule learning network, and performs the prediction accurately, while preserving the privacy and shares among authorized persons. Extensive experimentation has been carried out using the lung CT images and compared the performance of the proposed model with the existing VGG-16 and 19, Alexnets, Resnets-50 and 100, Inception V3, Densenets-121, 119, and 150, Mobilenets, SegCaps in terms of accuracy (98.2%), precision (97.3%), recall (96.5%), specificity (33.5%), and F1-score (97%) in predicting the COVID-19 with effectively preserving the privacy of the data among the heterogeneous users.

摘要

随着 SARS-CoV-2 的指数级增长,需要智能和建设性的实践来诊断 COVID-19。病毒的快速传播和缺乏可靠的检测模型被认为是检测 COVID-19 的主要问题。这个问题仍然是临床医生的最大负担。随着人工智能(AI)在图像处理中的出现,诊断 COVID-19 病例的负担已经降低到可以接受的水平。但是,传统的 AI 技术通常需要集中存储数据并对预测模型进行训练,这增加了计算的复杂性。现实世界的挑战是在全球范围内在医院之间交换数据,同时也要考虑到组织的隐私问题。在训练全球深度学习模型时,协作模型开发和隐私保护是至关重要的考虑因素。为了解决这些挑战,本文提出了一种基于区块链和联邦学习模型的新框架。联邦学习模型可以降低复杂性,而区块链则有助于在保持隐私的情况下进行分布式数据处理。更准确地说,所提出的联邦学习集成深度学习区块链模型(FLED-Block)框架从不同的医疗保健中心收集数据,使用混合胶囊学习网络开发模型,并进行准确的预测,同时保护隐私并在授权人员之间共享。使用肺部 CT 图像进行了广泛的实验,并将所提出的模型与现有的 VGG-16 和 19、Alexnets、Resnets-50 和 100、Inception V3、Densenets-121、119 和 150、Mobilenets、SegCaps 进行了性能比较,在预测 COVID-19 方面的准确性(98.2%)、精度(97.3%)、召回率(96.5%)、特异性(33.5%)和 F1 分数(97%),同时有效地保护了异构用户之间数据的隐私。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc9a/9247602/2e3052946ec0/fpubh-10-892499-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验