London School of Hygiene and Tropical Medicine, London, UK.
National Institute of Health, Rome, Italy.
Expert Rev Anti Infect Ther. 2022 Sep;20(9):1233-1241. doi: 10.1080/14787210.2022.2098115. Epub 2022 Jul 13.
Automated tools for antimicrobial resistance surveillance are critical for improving detection of drug-resistant organisms and informing prevention and control interventions. In this study, the WHONET-SaTScan software was used at a multihospital level in Tuscany, Italy, to identify case clusters consistent with hospital outbreaks caused by drug-resistant pathogens.
Antimicrobial resistance surveillance data from all Tuscany hospitals between January 2018 and December 2020 were analyzed using WHONET. The SaTScan package was used to detect case clusters applying a simulated prospective approach and the space-time permutation algorithm. Clusters were identified using resistance profiles and two distinct spatial variables: single medical services ('service') or groups of related services ('metaservice').
Data from eight bacterial pathogens were provided from 49 hospitals for 312,779 isolates from 158,809 patients. Single service-based analysis detected 693 hospital clusters, while metaservice-based analysis identified 635. There was no evidence for a difference between the two methods in terms of cluster length, cluster size, recurrence intervals, number of alerts, distribution across years or hospitals. Among clusters involving multiple services identified by both analyses, metaservice-detected clusters were usually larger and more statistically significant.
WHONET-SaTScan proved to be a valuable multi-facility cluster detection tool that can be implemented for real-time surveillance.
用于抗菌药物耐药性监测的自动化工具对于提高耐药生物体的检测能力以及为预防和控制干预措施提供信息至关重要。在这项研究中,WHONET-SaTScan 软件在意大利托斯卡纳的多医院层面上使用,以识别与耐药病原体引起的医院暴发相一致的病例集群。
使用 WHONET 分析了 2018 年 1 月至 2020 年 12 月期间所有托斯卡纳医院的抗菌药物耐药性监测数据。SaTScan 包用于通过模拟前瞻性方法和时空置换算法检测病例集群。使用耐药谱和两个不同的空间变量(单一医疗服务'服务'或相关服务组'元服务')来识别集群。
从 49 家医院为 158809 名患者的 312779 株分离物提供了 8 种细菌病原体的数据。基于单一服务的分析检测到 693 个医院集群,而基于元服务的分析则确定了 635 个。在集群长度、集群大小、复发间隔、警报数量、分布在不同年份或医院方面,两种方法之间没有证据表明存在差异。在两种分析方法均识别出涉及多个服务的集群中,元服务检测到的集群通常更大,更具统计学意义。
WHONET-SaTScan 被证明是一种有价值的多机构集群检测工具,可用于实时监测。