Suppr超能文献

用于检测医院疫情的自动化监测系统的实施与评估。

Implementation and evaluation of an automated surveillance system to detect hospital outbreak.

作者信息

Stachel Anna, Pinto Gabriela, Stelling John, Fulmer Yi, Shopsin Bo, Inglima Kenneth, Phillips Michael

机构信息

Infection Prevention and Control, New York University Langone Health System, New York, NY.

Infection Prevention and Control, New York University Langone Health System, New York, NY.

出版信息

Am J Infect Control. 2017 Dec 1;45(12):1372-1377. doi: 10.1016/j.ajic.2017.06.031. Epub 2017 Aug 23.

Abstract

BACKGROUND

The timely identification of a cluster is a critical requirement for infection prevention and control (IPC) departments because these events may represent transmission of pathogens within the health care setting. Given the issues with manual review of hospital infections, a surveillance system to detect clusters in health care settings must use automated data capture, validated statistical methods, and include all significant pathogens, antimicrobial susceptibility patterns, patient care locations, and health care teams.

METHODS

We describe the use of SaTScan statistical software to identify clusters, WHONET software to manage microbiology laboratory data, and electronic health record data to create a comprehensive outbreak detection system in our hospital. We also evaluated the system using the Centers for Disease Control and Prevention's guidelines.

RESULTS

During an 8-month surveillance time period, 168 clusters were detected, 45 of which met criteria for investigation, and 6 were considered transmission events. The system was felt to be flexible, timely, accepted by the department and hospital, useful, and sensitive, but it required significant resources and has a low positive predictive value.

CONCLUSIONS

WHONET-SaTScan is a useful addition to a robust IPC program. Although the resources required were significant, this prospective, real-time cluster detection surveillance system represents an improvement over historical methods. We detected several episodes of transmission which would have eluded us previously, and allowed us to focus infection prevention efforts and improve patient safety.

摘要

背景

及时识别聚集性感染对于感染预防与控制(IPC)部门而言至关重要,因为这些事件可能意味着病原体在医疗机构内传播。鉴于人工审查医院感染存在问题,用于检测医疗机构中聚集性感染的监测系统必须采用自动数据采集、经过验证的统计方法,且涵盖所有重要病原体、抗菌药物敏感性模式、患者护理地点以及医疗团队。

方法

我们描述了如何使用SaTScan统计软件来识别聚集性感染,利用WHONET软件管理微生物实验室数据,并借助电子健康记录数据在我院创建一个全面的暴发检测系统。我们还依据美国疾病控制与预防中心的指南对该系统进行了评估。

结果

在为期8个月的监测期间,共检测到168个聚集性感染,其中45个符合调查标准,6个被认定为传播事件。该系统被认为具有灵活性、及时性,得到了部门和医院的认可,实用且灵敏,但需要大量资源,且阳性预测值较低。

结论

WHONET - SaTScan是强大的IPC项目的有益补充。尽管所需资源庞大,但这个前瞻性的实时聚集性感染检测监测系统相较于以往方法有了改进。我们检测到了几起之前可能遗漏的传播事件,使我们能够集中感染预防工作并提高患者安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验