Zahid Muhammad Uzair, Kiranyaz Serkan, Gabbouj Moncef
IEEE Trans Biomed Eng. 2023 Jan;70(1):205-215. doi: 10.1109/TBME.2022.3187874. Epub 2022 Dec 26.
Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of wearable ECG sensors. However, even with numerous deep learning approaches proposed recently, there is still a notable gap in the performance of global and patient-specific ECG classification performance.
In this study, we propose a novel approach for inter-patient ECG classification using a compact 1D Self-ONN by exploiting morphological and timing information in heart cycles. We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks. We further inject temporal features based on RR interval for timing characterization. The classification layers can thus benefit from both temporal and learned features for the final arrhythmia classification.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved, i.e., 99.21% precision, 99.10% recall, and 99.15% F1-score for normal (N) segments; 82.19% precision, 82.50% recall, and 82.34% F1-score for the supra-ventricular ectopic beat (SVEBs); and finally, 94.41% precision, 96.10% recall, and 95.2% F1-score for the ventricular-ectopic beats (VEBs).
As a pioneer application, the results show that compact and shallow 1D Self-ONNs with the feature injection can surpass all state-of-the-art deep models with a significant margin and with minimal computational complexity.
This study has demonstrated that using a compact and superior network model, a global ECG classification can still be achieved with an elegant performance level even when no patient-specific information is used.
基于心电图(ECG)信号进行心律失常检测的全球(患者间)心电图分类,对人类和机器而言都是一项具有挑战性的任务。因此,随着可穿戴式ECG传感器的出现,以最高精度实现这一过程的自动化非常必要。然而,即使最近提出了众多深度学习方法,全球和患者特异性ECG分类性能之间仍存在显著差距。
在本研究中,我们提出了一种新颖的患者间ECG分类方法,通过利用心动周期中的形态和时间信息,使用紧凑的一维自组织神经网络(Self-ONN)。我们使用一维Self-ONN层从ECG数据中自动学习形态表示,使我们能够捕捉R波峰值周围ECG波形的形状。我们进一步基于RR间期注入时间特征以进行时间表征。分类层因此可以从时间和学习到的特征中受益,用于最终的心律失常分类。
使用麻省理工学院 - 贝斯以色列女执事医疗中心(MIT-BIH)心律失常基准数据库,所提出的方法实现了有史以来最高的分类性能,即正常(N)段的精度为99.21%、召回率为99.10%、F1分数为99.15%;室上性早搏(SVEB)的精度为82.19%、召回率为82.50%、F1分数为82.34%;最后,室性早搏(VEB)的精度为94.41%、召回率为96.10%、F1分数为95.2%。
作为一项开创性应用,结果表明具有特征注入的紧凑且浅层的一维Self-ONN能够以显著优势超越所有现有最先进的深度模型,且计算复杂度最小。
本研究表明,即使不使用患者特异性信息,使用紧凑且优越的网络模型仍可实现具有出色性能水平的全球ECG分类。