Suppr超能文献

Su-MICL:用于组织病理学图像可解释分类的基于严重程度引导的多实例课程学习。

Su-MICL: Severity-Guided Multiple Instance Curriculum Learning for Histopathology Image Interpretable Classification.

出版信息

IEEE Trans Med Imaging. 2022 Dec;41(12):3533-3543. doi: 10.1109/TMI.2022.3188326. Epub 2022 Dec 2.

Abstract

Histopathology image classification plays a critical role in clinical diagnosis. However, due to the absence of clinical interpretability, most existing image-level classifiers remain impractical. To acquire the essential interpretability, lesion-level diagnosis is also provided, relying on detailed lesion-level annotations. Although the multiple-instance learning (MIL)-based approach can identify lesions by only utilizing image-level annotations, it requires overly strict prior information and has limited accuracy in lesion-level tasks. Here, we present a novel severity-guided multiple instance curriculum learning (Su-MICL) strategy to avoid tedious labeling. The proposed Su-MICL is under a MIL framework with a neglected prior: disease severity to define the learning difficulty of training images. Based on the difficulty degree, a curriculum is developed to train a model utilizing images from easy to hard. The experimental results for two histopathology image datasets demonstrate that Su-MICL achieves comparable performance to the state-of-the-art weakly supervised methods for image-level classification, and its performance for identifying lesions is closest to the supervised learning method. Without tedious lesion labeling, the Su-MICL approach can provide an interpretable diagnosis, as well as an effective insight to aid histopathology image diagnosis.

摘要

组织病理学图像分类在临床诊断中起着至关重要的作用。然而,由于缺乏临床可解释性,大多数现有的图像级别分类器仍然不切实际。为了获得必要的可解释性,还提供了病变级别诊断,依赖于详细的病变级别注释。虽然基于多实例学习(MIL)的方法仅利用图像级别注释就可以识别病变,但它需要过于严格的先验信息,并且在病变级别任务中的准确性有限。在这里,我们提出了一种新的基于严重程度指导的多实例课程学习(Su-MICL)策略来避免繁琐的标注。所提出的 Su-MICL 是在忽略先验信息的 MIL 框架下提出的:疾病严重程度来定义训练图像的学习难度。基于难度等级,开发了一个课程来利用从简单到困难的图像训练模型。在两个组织病理学图像数据集上的实验结果表明,Su-MICL 在图像级别分类方面的性能可与最先进的弱监督方法相媲美,并且其识别病变的性能最接近监督学习方法。无需繁琐的病变标注,Su-MICL 方法不仅可以提供可解释的诊断,还可以为辅助组织病理学图像诊断提供有效的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验