Tang Kunming, Jiang Zhiguo, Wu Kun, Shi Jun, Xie Fengying, Wang Wei, Wu Haibo, Zheng Yushan
IEEE Trans Med Imaging. 2025 Jan;44(1):462-474. doi: 10.1109/TMI.2024.3447672. Epub 2025 Jan 2.
Multiple instance learning (MIL) based whole slide image (WSI) classification is often carried out on the representations of patches extracted from WSI with a pre-trained patch encoder. The performance of classification relies on both patch-level representation learning and MIL classifier training. Most MIL methods utilize a frozen model pre-trained on ImageNet or a model trained with self-supervised learning on histopathology image dataset to extract patch image representations and then fix these representations in the training of the MIL classifiers for efficiency consideration. However, the invariance of representations cannot meet the diversity requirement for training a robust MIL classifier, which has significantly limited the performance of the WSI classification. In this paper, we propose a Self-Supervised Representation Distribution Learning framework (SSRDL) for patch-level representation learning with an online representation sampling strategy (ORS) for both patch feature extraction and WSI-level data augmentation. The proposed method was evaluated on three datasets under three MIL frameworks. The experimental results have demonstrated that the proposed method achieves the best performance in histopathology image representation learning and data augmentation and outperforms state-of-the-art methods under different WSI classification frameworks. The code is available at https://github.com/lazytkm/SSRDL.
基于多实例学习(MIL)的全切片图像(WSI)分类通常是利用预训练的切片编码器,对从WSI中提取的切片表示进行的。分类性能依赖于切片级表示学习和MIL分类器训练。大多数MIL方法利用在ImageNet上预训练的冻结模型或在组织病理学图像数据集上通过自监督学习训练的模型来提取切片图像表示,然后出于效率考虑,在MIL分类器训练中固定这些表示。然而,这些表示的不变性无法满足训练强大的MIL分类器的多样性要求,这显著限制了WSI分类的性能。在本文中,我们提出了一种自监督表示分布学习框架(SSRDL),用于切片级表示学习,并采用在线表示采样策略(ORS)进行切片特征提取和WSI级数据增强。所提出的方法在三个MIL框架下的三个数据集上进行了评估。实验结果表明,该方法在组织病理学图像表示学习和数据增强方面取得了最佳性能,并且在不同的WSI分类框架下优于现有方法。代码可在https://github.com/lazytkm/SSRDL获取。