Li Xue, Li Xing, Zhang Qiaoyu, Lv Peng, Jia Yu, Wei Donghui
Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475001, China.
Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
Org Biomol Chem. 2022 Jul 20;20(28):5525-5534. doi: 10.1039/d2ob00848c.
Uncovering the comprehensive catalytic mechanism for the activation of triplet O through metal-free and cofactor-free oxidases and oxygenases remains one of the most challenging problems in the area of enzymatic catalysis. Herein, we performed multiscale simulation with molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) techniques to reveal the detailed mechanism of ActVA-Orf6 monooxygenase catalyzed oxygenation of phenols to quinones from , such as the oxidation of 6-deoxydihydrocarafungin (DDHK) to dihydrocarafungin (DHK). The entire catalytic mechanism consists of three steps: (1) proton-coupled electron transfer (PCET) from the substrate DDHK to triplet O with the aid of an explicit water molecule, (2) the formation of a C-O bond an open-shell singlet diradical complexation pathway, and (3) dehydration a six-membered ring mode assisted by one water molecule. The complete energetic profiles show that the rate-determining step is the dehydration with an energy barrier of 20.7 kcal mol, which is close to that of 19.7 kcal mol derived from experimental kinetic data. Our mechanistic study not only helps to deeply understand the fundamental mechanism of metal-free and cofactor-free oxidase and oxygenase catalyzed different reactions, but also discloses a new route that proceeds through the processes of PCET and the open-shell singlet transition state.
揭示通过无金属和无辅因子的氧化酶及加氧酶激活三线态氧的全面催化机制,仍然是酶催化领域最具挑战性的问题之一。在此,我们运用分子动力学(MD)和量子力学/分子力学(QM/MM)技术进行多尺度模拟,以揭示ActVA-Orf6单加氧酶催化酚类氧化为醌类(如6-脱氧二氢卡拉芬净(DDHK)氧化为二氢卡拉芬净(DHK))的详细机制。整个催化机制包括三个步骤:(1)在一个明确的水分子辅助下,质子耦合电子转移(PCET)从底物DDHK转移至三线态氧;(2)通过开壳单重态双自由基络合途径形成C-O键;(3)在一个水分子辅助下通过六元环模式脱水。完整的能量分布图表明,速率决定步骤是脱水,其能量势垒为20.7 kcal/mol,这与从实验动力学数据得出的19.7 kcal/mol相近。我们的机理研究不仅有助于深入理解无金属和无辅因子的氧化酶及加氧酶催化不同反应的基本机制,还揭示了一条通过PCET过程和开壳单重态过渡态的新途径。