Suppr超能文献

神经网络最小作用量原理。

Neural Network for Principle of Least Action.

机构信息

Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, United States.

Center for Integrated Nanotechnologies, Sandia National Laboratory, Albuquerque, New Mexico 87185, United States.

出版信息

J Chem Inf Model. 2022 Jul 25;62(14):3346-3351. doi: 10.1021/acs.jcim.2c00515. Epub 2022 Jul 5.

Abstract

The principle of least action is the cornerstone of classical mechanics, theory of relativity, quantum mechanics, and thermodynamics. Here, we describe how a neural network (NN) learns to find the trajectory for a Lennard-Jones (LJ) system that maintains balance in minimizing the Onsager-Machlup (OM) action and maintaining the energy conservation. The phase-space trajectory thus calculated is in excellent agreement with the corresponding results from the "ground-truth" molecular dynamics (MD) simulation. Furthermore, we show that the NN can easily find structural transformation pathways for LJ clusters, for example, the basin-hopping transformation of an LJ from an incomplete Mackay icosahedron to a truncated face-centered cubic octahedron. Unlike MD, the NN computes atomic trajectories over the entire temporal domain in one fell swoop, and the NN time step is a factor of 20 larger than the MD time step. The NN approach to OM action is quite general and can be adapted to model morphometrics in a variety of applications.

摘要

最小作用量原理是经典力学、相对论、量子力学和热力学的基石。在这里,我们描述了神经网络(NN)如何学习为 Lennard-Jones(LJ)系统找到保持平衡的轨迹,以最小化 Onsager-Machlup(OM)作用并保持能量守恒。由此计算出的相空间轨迹与“真实”分子动力学(MD)模拟的相应结果非常吻合。此外,我们还表明,神经网络可以轻松找到 LJ 团簇的结构转变途径,例如,LJ 从不完全 Mackay 二十面体到截断面心立方八面体的盆地跳跃转变。与 MD 不同,NN 可以在一次计算中一次性计算整个时间域内的原子轨迹,并且 NN 的时间步长是 MD 时间步长的 20 倍。NN 对 OM 作用的方法非常通用,可以适应各种应用中的形态计量学建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d84/9326973/7cd27c7f46c8/ci2c00515_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验