Department of Child Development and Education, University of Amsterdam.
Department of Psychology, University of Amsterdam.
Psychol Methods. 2024 Apr;29(2):388-406. doi: 10.1037/met0000501. Epub 2022 Jul 4.
Assessing measurement invariance is an important step in establishing a meaningful comparison of measurements of a latent construct across individuals or groups. Most recently, moderated nonlinear factor analysis (MNLFA) has been proposed as a method to assess measurement invariance. In MNLFA models, measurement invariance is examined in a single-group confirmatory factor analysis model by means of parameter moderation. The advantages of MNLFA over other methods is that it (a) accommodates the assessment of measurement invariance across multiple continuous and categorical background variables and (b) accounts for heteroskedasticity by allowing the factor and residual variances to differ as a function of the background variables. In this article, we aim to make MNLFA more accessible to researchers without access to commercial structural equation modeling software by demonstrating how this method can be applied with the open-source R package OpenMx. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
评估测量不变性是在个体或群体之间对潜在构念的测量进行有意义比较的重要步骤。最近,提出了调节非线性因子分析(MNLFA)作为评估测量不变性的一种方法。在 MNLFA 模型中,通过参数调节,在单个组验证性因子分析模型中检查测量不变性。与其他方法相比,MNLFA 的优势在于:(a) 可以在多个连续和分类背景变量上评估测量不变性;(b) 通过允许因子和残差方差随背景变量的函数而变化,来考虑异方差性。在本文中,我们旨在通过演示如何使用开源 R 包 OpenMx 应用这种方法,使没有商业结构方程建模软件的研究人员更容易使用 MNLFA。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。