通过动态调节肠道代谢来工程改造益生菌以抑制艰难梭菌感染。

Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism.

机构信息

NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.

Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

出版信息

Nat Commun. 2022 Jul 4;13(1):3834. doi: 10.1038/s41467-022-31334-z.

Abstract

Clostridioides difficile infection (CDI) results in significant morbidity and mortality in hospitalised patients. The pathogenesis of CDI is intrinsically related to the ability of C. difficile to shuffle between active vegetative cells and dormant endospores through the processes of germination and sporulation. Here, we hypothesise that dysregulation of microbiome-mediated bile salt metabolism contributes to CDI and that its alleviation can limit the pathogenesis of CDI. We engineer a genetic circuit harbouring a genetically encoded sensor, amplifier and actuator in probiotics to restore intestinal bile salt metabolism in response to antibiotic-induced microbiome dysbiosis. We demonstrate that the engineered probiotics limited the germination of endospores and the growth of vegetative cells of C. difficile in vitro and further significantly reduced CDI in model mice, as evidenced by a 100% survival rate and improved clinical outcomes. Our work presents an antimicrobial strategy that harnesses the host-pathogen microenvironment as the intervention target to limit the pathogenesis of infection.

摘要

艰难梭菌感染(CDI)可导致住院患者出现显著的发病率和死亡率。CDI 的发病机制本质上与艰难梭菌通过发芽和孢子形成过程在活跃的营养细胞和休眠的内生孢子之间转换的能力有关。在这里,我们假设微生物组介导的胆汁盐代谢失调会导致 CDI,并且其缓解可以限制 CDI 的发病机制。我们在益生菌中设计了一个包含遗传编码传感器、放大器和执行器的遗传回路,以响应抗生素诱导的微生物组失调来恢复肠道胆汁盐代谢。我们证明,该工程益生菌可限制内生孢子的发芽和营养细胞的生长在体外艰难梭菌,并进一步显著降低模型小鼠中的 CDI,这一点从 100%的存活率和改善的临床结果中得到了证明。我们的工作提出了一种抗菌策略,利用宿主-病原体微环境作为干预目标来限制感染的发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/196e/9253155/249a9f94bcc7/41467_2022_31334_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索