Zhou Zhengqing, Chen Xiaoli, Şimşek Emrah, Hamrick Grayson S, Baig Yasa, Holmes Zachary A, Du Zhenjiao, Karig David K, You Lingchong
Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
Center for Quantitative Biodesign, Duke University, Durham, North Carolina, USA.
bioRxiv. 2025 Jun 19:2025.06.13.659614. doi: 10.1101/2025.06.13.659614.
Microbial communities often exhibit apparently complex dynamics driven by myriad interactions among community members and with their environments. Yet, practical modeling and control are often based on limited number of observables, raising a fundamental question: Here, we report an emergent simplicity that the temporal dynamics of observable microbial populations can be captured by low-dimensional representations. Using variational autoencoders (VAEs), we define a critical latent dimension ( ) that quantifies the minimal number of variables required to represent observable microbial dynamics. We find that scales linearly with the number of observables, despite the complexity of unobserved background dynamics. This principle holds across simulations of ecological, spatial, and gene-transfer models, experiments with engineered and environment-derived communities, and human microbiomes. Our findings establish a scaling law for microbial community dynamics and demonstrate observable dynamics alone contain sufficient information for prediction and control, even without full knowledge of the community.
微生物群落通常表现出由群落成员之间及其与环境之间无数相互作用驱动的明显复杂动态。然而,实际的建模和控制往往基于有限数量的可观测变量,这就引出了一个基本问题:在此,我们报告了一种涌现的简单性,即可观测微生物种群的时间动态可以通过低维表示来捕捉。使用变分自编码器(VAE),我们定义了一个关键的潜在维度( ),它量化了表示可观测微生物动态所需的最小变量数量。我们发现,尽管未观测到的背景动态很复杂,但 与可观测变量的数量呈线性比例关系。这一原理在生态、空间和基因转移模型的模拟、工程和环境衍生群落的实验以及人类微生物组中均成立。我们的研究结果建立了微生物群落动态的比例定律,并表明仅可观测动态就包含了足够的信息用于预测和控制,即使对群落没有全面了解。