文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

分子金属卟啉纳米棒光催化体系可持续产氢。

Molecular Metallocorrole-Nanorod Photocatalytic System for Sustainable Hydrogen Production.

机构信息

Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel.

Current address of T.-A. Le: Faculty of science and engineering, Åbo Akademi University, Turku, 20500, Finland.

出版信息

ChemSusChem. 2022 Sep 7;15(17):e202200804. doi: 10.1002/cssc.202200804. Epub 2022 Jul 29.


DOI:10.1002/cssc.202200804
PMID:35789067
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9540064/
Abstract

Solar-driven photocatalytic generation of hydrogen from water is a potential source of clean and renewable fuel. Yet systems that are sufficiently stable and efficient for practical use have not been realized. Here, nanorod photocatalysts that have proven record activity for the water reduction half reaction were successfully combined with molecular metallocorroles suitable for catalyzing the accompanying oxidation reactions. Utilization of OH /⋅OH redox species as charge transfer shuttle between freely mixed metallocorroles and rods resulted in quantum efficiency that peaked as high as 17 % for hydrogen production from water in the absence of sacrificial hole scavengers. While typically each sacrificial scavenger is able to extract but a single hole, here the molecular metallocorrole catalysts were found to successfully handle nearly 300,000 holes during their lifespan. The implications of the new system on the prospects of realizing practical overall water splitting and direct solar-to-fuel energy conversion were discussed.

摘要

利用太阳能光催化分解水制氢是一种有潜力的清洁可再生燃料来源。然而,目前还没有开发出足够稳定和高效的系统来实际应用。在这里,我们成功地将已被证明对水还原半反应具有高活性的纳米棒光催化剂与适合催化伴随氧化反应的分子金属卟啉配合物结合在一起。利用 OH/⋅OH 氧化还原物种作为自由混合的金属卟啉配合物和纳米棒之间的电荷转移穿梭体,在没有牺牲空穴清除剂的情况下,光解水制氢的量子效率最高可达 17%。虽然通常每个牺牲性清除剂只能提取一个空穴,但在这里发现,分子金属卟啉配合物催化剂在其寿命期间能够成功处理近 30 万个空穴。讨论了新体系对实现实际的整体水分解和直接太阳能到燃料能量转换的前景的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/28d77fa37181/CSSC-15-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/fb3d9cf14473/CSSC-15-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/3d9f37f2b1cf/CSSC-15-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/3c83b89a354c/CSSC-15-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/8ec05b003cd7/CSSC-15-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/28d77fa37181/CSSC-15-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/fb3d9cf14473/CSSC-15-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/3d9f37f2b1cf/CSSC-15-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/3c83b89a354c/CSSC-15-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/8ec05b003cd7/CSSC-15-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d4/9540064/28d77fa37181/CSSC-15-0-g002.jpg

相似文献

[1]
Molecular Metallocorrole-Nanorod Photocatalytic System for Sustainable Hydrogen Production.

ChemSusChem. 2022-9-7

[2]
Perfect Photon-to-Hydrogen Conversion Efficiency.

Nano Lett. 2016-2-3

[3]
Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production.

Acc Chem Res. 2019-1-15

[4]
Roles of cocatalysts in photocatalysis and photoelectrocatalysis.

Acc Chem Res. 2013-3-26

[5]
Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.

Acc Chem Res. 2015-2-12

[6]
Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.

Nature. 2001-12-6

[7]
Molecular Metallocorrole-Nanorod Photocatalytic System for Sustainable Hydrogen Production.

ChemSusChem. 2022-9-7

[8]
Biomimetic and microbial approaches to solar fuel generation.

Acc Chem Res. 2009-12-21

[9]
The Other Dimension-Tuning Hole Extraction via Nanorod Width.

Nanomaterials (Basel). 2022-9-25

[10]
Effective Charge Carrier Utilization in Photocatalytic Conversions.

Acc Chem Res. 2016-4-14

引用本文的文献

[1]
Unravelling Dynamics Involving Multiple Charge Carriers in Semiconductor Nanocrystals.

Nanomaterials (Basel). 2023-5-8

[2]
Insights into the Synthesis Mechanisms of Ag-CuP-GaP Multicomponent Nanoparticles.

ACS Nano. 2023-4-25

[3]
The Other Dimension-Tuning Hole Extraction via Nanorod Width.

Nanomaterials (Basel). 2022-9-25

本文引用的文献

[1]
Metal-Corrole-Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions.

Angew Chem Int Ed Engl. 2022-6-13

[2]
Corroles at work: a small macrocycle for great applications.

Chem Soc Rev. 2022-2-21

[3]
Elucidation of Factors That Govern the 2e/2H vs 4e/4H Selectivity of Water Oxidation by a Cobalt Corrole.

J Am Chem Soc. 2020-12-16

[4]
Electrochemical and Photoelectrochemical Water Oxidation for Hydrogen Peroxide Production.

Angew Chem Int Ed Engl. 2021-5-3

[5]
Cell-Penetrating Protein/Corrole Nanoparticles.

Sci Rep. 2019-2-19

[6]
A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water.

Angew Chem Weinheim Bergstr Ger. 2016-2-12

[7]
Photochemical Oxidative Growth of Iridium Oxide Nanoparticles on CdSe@CdS Nanorods.

J Vis Exp. 2016-2-11

[8]
Perfect Photon-to-Hydrogen Conversion Efficiency.

Nano Lett. 2016-2-3

[9]
A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water.

Angew Chem Int Ed Engl. 2016-2-12

[10]
Why Is Cobalt the Best Transition Metal in Transition-Metal Hangman Corroles for O-O Bond Formation during Water Oxidation?

J Phys Chem Lett. 2012-9-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索