Suppr超能文献

基于固体衰减成分注意力的深度学习模型用于在计算机断层扫描上预测肺腺癌的微乳头和实性模式

Solid Attenuation Components Attention Deep Learning Model to Predict Micropapillary and Solid Patterns in Lung Adenocarcinomas on Computed Tomography.

作者信息

Chen Li-Wei, Yang Shun-Mao, Chuang Ching-Chia, Wang Hao-Jen, Chen Yi-Chang, Lin Mong-Wei, Hsieh Min-Shu, Antonoff Mara B, Chang Yeun-Chung, Wu Carol C, Pan Tinsu, Chen Chung-Ming

机构信息

Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.

Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Ann Surg Oncol. 2022 Nov;29(12):7473-7482. doi: 10.1245/s10434-022-12055-5. Epub 2022 Jul 5.

Abstract

BACKGROUND

High-grade adenocarcinoma subtypes (micropapillary and solid) treated with sublobar resection have an unfavorable prognosis compared with those treated with lobectomy. We investigated the potential of incorporating solid attenuation component masks with deep learning in the prediction of high-grade components to optimize surgical strategy preoperatively.

METHODS

A total of 502 patients with pathologically confirmed high-grade adenocarcinomas were retrospectively enrolled between 2016 and 2020. The SACs attention DL model was developed to apply solid-attenuation-component-like subregion masks (tumor area ≥ - 190 HU) to guide the DL model for predicting high-grade subtypes. The SACA-DL was assessed using 5-fold cross-validation and external validation in the training and testing sets, respectively. The performance, which was evaluated using the area under the curve (AUC), was compared between SACA-DL and the DL model without SACs attention (DL), the prior radiomics model, or the model based on the consolidation/tumor (C/T) diameter ratio.

RESULTS

We classified 313 and 189 patients into training and testing cohorts, respectively. The SACA-DL achieved an AUC of 0.91 for the cross-validation, which was significantly superior to those of the DL (AUC = 0.88; P = 0.02), prior radiomics model (AUC = 0.85; P = 0.004), and C/T ratio (AUC = 0.84; P = 0.002). An AUC of 0.93 was achieved for external validation in the SACA-DL and was significantly better than those of the DL (AUC = 0.89; P = 0.04), prior radiomics model (AUC = 0.85; P < 0.001), and C/T ratio (AUC = 0.85; P < 0.001).

CONCLUSIONS

The combination of solid-attenuation-component-like subregion masks with the DL model is a promising approach for the preoperative prediction of high-grade adenocarcinoma subtypes.

摘要

背景

与接受肺叶切除术的患者相比,接受亚肺叶切除术治疗的高级别腺癌亚型(微乳头型和实体型)预后较差。我们研究了将实性衰减成分掩码与深度学习相结合,在预测高级别成分方面的潜力,以在术前优化手术策略。

方法

回顾性纳入2016年至2020年间共502例经病理证实的高级别腺癌患者。开发了SACs注意力深度学习模型,应用类似实性衰减成分的子区域掩码(肿瘤区域≥ - 190 HU)来指导深度学习模型预测高级别亚型。分别在训练集和测试集中使用5折交叉验证和外部验证对SACA-DL进行评估。使用曲线下面积(AUC)评估性能,比较SACA-DL与无SACs注意力的深度学习模型(DL)、先前的放射组学模型或基于实变/肿瘤(C/T)直径比的模型之间的性能。

结果

我们分别将313例和189例患者纳入训练队列和测试队列。SACA-DL在交叉验证中AUC为0.91,显著优于DL(AUC = 0.88;P = 0.02)、先前的放射组学模型(AUC = 0.85;P = 0.004)和C/T比(AUC = 0.84;P = 0.002)。SACA-DL在外部验证中的AUC为0.93,显著优于DL(AUC = 0.89;P = 0.04)、先前的放射组学模型(AUC = 0.85;P < 0.001)和C/T比(AUC = 0.85;P < 0.001)。

结论

类似实性衰减成分的子区域掩码与深度学习模型相结合,是术前预测高级别腺癌亚型的一种有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验