Suppr超能文献

基于计算机断层扫描的深度学习用于预测肺腺癌的亚型分类和生存情况。

Deep learning for predicting subtype classification and survival of lung adenocarcinoma on computed tomography.

作者信息

Wang Chengdi, Shao Jun, Lv Junwei, Cao Yidi, Zhu Chaonan, Li Jingwei, Shen Wei, Shi Lei, Liu Dan, Li Weimin

机构信息

Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China.

Hangzhou YITU Healthcare Technology Co., Ltd. Hangzhou, China; Shanghai Key Laboratory of Artificial Intelligence for Medical Image and Knowledge Graph, Shanghai, China.

出版信息

Transl Oncol. 2021 Aug;14(8):101141. doi: 10.1016/j.tranon.2021.101141. Epub 2021 Jun 1.

Abstract

OBJECTIVES

The subtype classification of lung adenocarcinoma is important for treatment decision. This study aimed to investigate the deep learning and radiomics networks for predicting histologic subtype classification and survival of lung adenocarcinoma diagnosed through computed tomography (CT) images.

METHODS

A dataset of 1222 patients with lung adenocarcinoma were retrospectively enrolled from three medical institutions. The anonymised preoperative CT images and pathological labels of atypical adenomatous hyperplasia, adenocarcinoma in situ, minimally invasive adenocarcinoma, invasive adenocarcinoma (IAC) with five predominant components were obtained. These pathological labels were divided into 2-category classification (IAC; non-IAC), 3-category and 8-category. We modeled the classification task of histological subtypes based on modified ResNet-34 deep learning network, radiomics strategies and deep radiomics combined algorithm. Then we established the prognostic models in lung adenocarcinoma patients with survival outcomes. The accuracy (ACC), area under ROC curves (AUCs) and C-index were primarily performed to evaluate the algorithms.

RESULTS

This study included a training set (n = 802) and two validation cohorts (internal, n = 196; external, n = 224). The ACC of deep radiomics algorithm in internal validation achieved 0.8776, 0.8061 in the 2-category, 3-category classification, respectively. Even in 8 classifications, the AUC ranged from 0.739 to 0.940 in internal set. Further, we constructed a prognosis model that C-index was 0.892(95% CI: 0.846-0.937) in internal validation set.

CONCLUSIONS

The automated deep radiomics based triage system has achieved the great performance in the subtype classification and survival predictability in patients with CT-detected lung adenocarcinoma nodules, providing the clinical guide for treatment strategies.

摘要

目的

肺腺癌的亚型分类对于治疗决策至关重要。本研究旨在探讨深度学习和放射组学网络,以预测通过计算机断层扫描(CT)图像诊断的肺腺癌的组织学亚型分类和生存情况。

方法

回顾性纳入来自三个医疗机构的1222例肺腺癌患者数据集。获取了非典型腺瘤样增生、原位腺癌、微浸润腺癌、具有五种主要成分的浸润性腺癌(IAC)的匿名术前CT图像和病理标签。这些病理标签被分为两类分类(IAC;非IAC)、三类和八类。我们基于改良的ResNet-34深度学习网络、放射组学策略和深度放射组学联合算法对组织学亚型的分类任务进行建模。然后我们在有生存结果的肺腺癌患者中建立了预后模型。主要通过准确率(ACC)、ROC曲线下面积(AUC)和C指数来评估算法。

结果

本研究包括一个训练集(n = 802)和两个验证队列(内部,n = 196;外部,n = 224)。深度放射组学算法在内部验证中的ACC在两类、三类分类中分别达到0.8776、0.8061。即使在八分类中,内部数据集的AUC范围为0.739至0.940。此外,我们构建了一个预后模型,其在内部验证集中的C指数为0.892(95%CI:0.846 - 0.937)。

结论

基于自动深度放射组学的分类系统在CT检测到的肺腺癌结节患者的亚型分类和生存预测方面取得了优异的表现,为治疗策略提供了临床指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dadc/8184655/ef25a25034f6/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验