Suppr超能文献

VPint:基于值传播的空间插值

VPint: value propagation-based spatial interpolation.

作者信息

Arp Laurens, Baratchi Mitra, Hoos Holger

机构信息

Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, Leiden, The Netherlands.

University of British Columbia, Vancouver, Canada.

出版信息

Data Min Knowl Discov. 2022;36(5):1647-1678. doi: 10.1007/s10618-022-00843-2. Epub 2022 Jun 30.

Abstract

Given the common problem of missing data in real-world applications from various fields, such as remote sensing, ecology and meteorology, the interpolation of missing spatial and spatio-temporal data can be of tremendous value. Existing methods for spatial interpolation, most notably Gaussian processes and spatial autoregressive models, tend to suffer from (a) a trade-off between modelling local or global spatial interaction, (b) the assumption there is only one possible path between two points, and (c) the assumption of homogeneity of intermediate locations between points. Addressing these issues, we propose a value propagation-based spatial interpolation method called VPint, inspired by Markov reward processes (MRPs), and introduce two variants thereof: (i) a static discount (SD-MRP) and (ii) a data-driven weight prediction (WP-MRP) variant. Both these interpolation variants operate locally, while implicitly accounting for global spatial relationships in the entire system through recursion. We evaluated our proposed methods by comparing the mean absolute error, root mean squared error, peak signal-to-noise ratio and structural similarity of interpolated grid cells to those of 8 common baselines. Our analysis involved detailed experiments on a synthetic and two real-world datasets, as well as experiments on convergence and scalability. Empirical results demonstrate the competitive advantage of VPint on randomly missing data, where it performed better than baselines in terms of mean absolute error and structural similarity, as well as spatially clustered missing data, where it performed best on 2 out of 3 datasets.

摘要

鉴于在诸如遥感、生态学和气象学等各个领域的实际应用中普遍存在数据缺失问题,对缺失的空间和时空数据进行插值可能具有巨大价值。现有的空间插值方法,最显著的是高斯过程和空间自回归模型,往往存在以下问题:(a) 在建模局部或全局空间相互作用之间进行权衡;(b) 假设两点之间只有一条可能路径;(c) 假设两点之间中间位置具有同质性。为了解决这些问题,我们受马尔可夫奖励过程(MRP)启发,提出了一种基于值传播的空间插值方法VPint,并介绍了其两种变体:(i) 静态折扣(SD-MRP)和(ii) 数据驱动权重预测(WP-MRP)变体。这两种插值变体都在局部运行,同时通过递归隐式考虑整个系统中的全局空间关系。我们通过比较插值网格单元与8种常见基线的平均绝对误差、均方根误差、峰值信噪比和结构相似性来评估我们提出的方法。我们的分析包括在一个合成数据集和两个真实世界数据集上进行详细实验,以及关于收敛性和可扩展性的实验。实证结果表明,VPint在随机缺失数据方面具有竞争优势,在平均绝对误差和结构相似性方面表现优于基线,在空间聚类缺失数据方面,在3个数据集中的2个上表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97df/9243883/27471e6fa1aa/10618_2022_843_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验