Suppr超能文献

一种基于深度学习的环境数据时空预测新框架。

A novel framework for spatio-temporal prediction of environmental data using deep learning.

机构信息

Faculty of Geosciences and Environment - Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland.

Swiss Re, Zurich, Switzerland.

出版信息

Sci Rep. 2020 Dec 17;10(1):22243. doi: 10.1038/s41598-020-79148-7.

Abstract

As the role played by statistical and computational sciences in climate and environmental modelling and prediction becomes more important, Machine Learning researchers are becoming more aware of the relevance of their work to help tackle the climate crisis. Indeed, being universal nonlinear function approximation tools, Machine Learning algorithms are efficient in analysing and modelling spatially and temporally variable environmental data. While Deep Learning models have proved to be able to capture spatial, temporal, and spatio-temporal dependencies through their automatic feature representation learning, the problem of the interpolation of continuous spatio-temporal fields measured on a set of irregular points in space is still under-investigated. To fill this gap, we introduce here a framework for spatio-temporal prediction of climate and environmental data using deep learning. Specifically, we show how spatio-temporal processes can be decomposed in terms of a sum of products of temporally referenced basis functions, and of stochastic spatial coefficients which can be spatially modelled and mapped on a regular grid, allowing the reconstruction of the complete spatio-temporal signal. Applications on two case studies based on simulated and real-world data will show the effectiveness of the proposed framework in modelling coherent spatio-temporal fields.

摘要

随着统计和计算科学在气候和环境建模与预测中扮演的角色变得越来越重要,机器学习研究人员越来越意识到他们的工作与帮助应对气候危机息息相关。事实上,作为通用的非线性函数逼近工具,机器学习算法在分析和建模空间和时间变化的环境数据方面非常高效。虽然深度学习模型已经证明通过自动特征表示学习能够捕捉空间、时间和时空依赖性,但在对一组不规则空间点上测量的连续时空场进行插值的问题上仍研究不足。为了填补这一空白,我们在这里引入了一个使用深度学习进行气候和环境数据时空预测的框架。具体来说,我们展示了如何根据时间参考基函数的乘积和可以在规则网格上进行空间建模和映射的随机空间系数来分解时空过程,从而允许重建完整的时空信号。基于模拟和真实数据的两个案例研究的应用将展示所提出框架在建模连贯时空场方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5997/7746728/5c789587dad1/41598_2020_79148_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验