Suppr超能文献

高维替代标志物的双重稳健评估。

Doubly robust evaluation of high-dimensional surrogate markers.

机构信息

RAND Corporation, 1776 Main St. Santa Monica, CA, 90401, USA.

Univ. Bordeaux, INSERM, INRIA, BPH, U1219, SISTM, F-33000 Bordeaux, France and Vaccine Research Institute, F-94000 Créteil, France.

出版信息

Biostatistics. 2023 Oct 18;24(4):985-999. doi: 10.1093/biostatistics/kxac020.

Abstract

When evaluating the effectiveness of a treatment, policy, or intervention, the desired measure of efficacy may be expensive to collect, not routinely available, or may take a long time to occur. In these cases, it is sometimes possible to identify a surrogate outcome that can more easily, quickly, or cheaply capture the effect of interest. Theory and methods for evaluating the strength of surrogate markers have been well studied in the context of a single surrogate marker measured in the course of a randomized clinical study. However, methods are lacking for quantifying the utility of surrogate markers when the dimension of the surrogate grows. We propose a robust and efficient method for evaluating a set of surrogate markers that may be high-dimensional. Our method does not require treatment to be randomized and may be used in observational studies. Our approach draws on a connection between quantifying the utility of a surrogate marker and the most fundamental tools of causal inference-namely, methods for robust estimation of the average treatment effect. This connection facilitates the use of modern methods for estimating treatment effects, using machine learning to estimate nuisance functions and relaxing the dependence on model specification. We demonstrate that our proposed approach performs well, demonstrate connections between our approach and certain mediation effects, and illustrate it by evaluating whether gene expression can be used as a surrogate for immune activation in an Ebola study.

摘要

在评估治疗、政策或干预措施的有效性时,可能需要花费高昂的成本、无法常规获得或需要很长时间才能获得理想的疗效测量指标。在这些情况下,有时可以确定一个替代终点,该终点可以更轻松、快速或廉价地捕捉到感兴趣的效果。在随机临床试验中测量单个替代终点的情况下,已经对评估替代标志物强度的理论和方法进行了深入研究。但是,当替代终点的维度增加时,量化替代标志物效用的方法却缺乏。我们提出了一种稳健且高效的方法来评估一组可能是高维的替代标志物。我们的方法不需要对治疗进行随机分组,并且可以在观察性研究中使用。我们的方法基于量化替代标志物效用与因果推断最基本工具之间的联系,即用于稳健估计平均治疗效果的方法。这种联系便于使用现代方法估计治疗效果,使用机器学习来估计干扰函数,并放宽对模型规范的依赖。我们证明了我们提出的方法表现良好,演示了我们的方法与某些中介效应之间的联系,并通过评估基因表达是否可以在埃博拉研究中用作免疫激活的替代指标来说明该方法。

相似文献

1
Doubly robust evaluation of high-dimensional surrogate markers.高维替代标志物的双重稳健评估。
Biostatistics. 2023 Oct 18;24(4):985-999. doi: 10.1093/biostatistics/kxac020.
2
Evaluating multiple surrogate markers with censored data.评估带有删失数据的多个替代标志物。
Biometrics. 2021 Dec;77(4):1315-1327. doi: 10.1111/biom.13370. Epub 2020 Sep 22.
7
Evaluating surrogate marker information using censored data.使用删失数据评估替代标志物信息。
Stat Med. 2017 May 20;36(11):1767-1782. doi: 10.1002/sim.7220. Epub 2017 Jan 15.
10
Testing for heterogeneity in the utility of a surrogate marker.检测替代标志物效用的异质性。
Biometrics. 2023 Jun;79(2):799-810. doi: 10.1111/biom.13600. Epub 2021 Dec 7.

引用本文的文献

1
Robust evaluation of longitudinal surrogate markers with censored data.对带有删失数据的纵向替代标志物进行稳健评估。
J R Stat Soc Series B Stat Methodol. 2024 Dec 26;87(3):891-907. doi: 10.1093/jrsssb/qkae119. eCollection 2025 Jul.

本文引用的文献

4
Methods for correcting inference based on outcomes predicted by machine learning.基于机器学习预测结果进行推理的校正方法。
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30266-30275. doi: 10.1073/pnas.2001238117. Epub 2020 Nov 18.
7
Evaluation of longitudinal surrogate markers.纵向替代标志物的评估。
Biometrics. 2021 Jun;77(2):477-489. doi: 10.1111/biom.13310. Epub 2020 Jun 22.
10
Assessing the value of a censored surrogate outcome.评估有删失的替代结局的价值。
Lifetime Data Anal. 2020 Apr;26(2):245-265. doi: 10.1007/s10985-019-09473-1. Epub 2019 Apr 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验