From the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC.
Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
Epidemiology. 2021 May 1;32(3):393-401. doi: 10.1097/EDE.0000000000001332.
Modern causal inference methods allow machine learning to be used to weaken parametric modeling assumptions. However, the use of machine learning may result in complications for inference. Doubly robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several different estimators for the average causal effect. The data generating mechanisms for the simulated treatment and outcome included log-transforms, polynomial terms, and discontinuities. We compared singly robust estimators (g-computation, inverse probability weighting) and doubly robust estimators (augmented inverse probability weighting, targeted maximum likelihood estimation). We estimated nuisance functions with parametric models and ensemble machine learning separately. We further assessed doubly robust cross-fit estimators.
With correctly specified parametric models, all of the estimators were unbiased and confidence intervals achieved nominal coverage. When used with machine learning, the doubly robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
Due to the difficulty of properly specifying parametric models in high-dimensional data, doubly robust estimators with ensemble learning and cross-fitting may be the preferred approach for estimation of the average causal effect in most epidemiologic studies. However, these approaches may require larger sample sizes to avoid finite-sample issues.
现代因果推理方法允许机器学习被用于削弱参数建模假设。然而,机器学习的使用可能会给推理带来复杂性。双重稳健交叉拟合估计器已被提出以获得更好的统计性质。
我们进行了一项模拟研究,以评估几种不同的平均因果效应估计器的性能。模拟的处理和结果的生成机制包括对数转换、多项式项和不连续性。我们比较了单一稳健估计器(g 计算、逆概率加权)和双重稳健估计器(增强逆概率加权、靶向最大似然估计)。我们分别使用参数模型和集成机器学习来估计混杂函数。我们进一步评估了双重稳健交叉拟合估计器。
在正确指定参数模型的情况下,所有估计器都是无偏的,置信区间达到了名义覆盖范围。当与机器学习一起使用时,双重稳健交叉拟合估计器在偏差、方差和置信区间覆盖方面都大大优于所有其他估计器。
由于在高维数据中正确指定参数模型的困难,具有集成学习和交叉拟合的双重稳健估计器可能是大多数流行病学研究中估计平均因果效应的首选方法。然而,这些方法可能需要更大的样本量来避免有限样本问题。