Mukkatt Indulekha, Mohanachandran Anjana Padmaja, Nirmala Anjali, Patra Dipak, Sukumaran Priyanka A, Pillai Renjith S, Rakhi R B, Shankar Sreejith, Ajayaghosh Ayyappanpillai
Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
ACS Appl Mater Interfaces. 2022 Jul 20;14(28):31900-31910. doi: 10.1021/acsami.2c05744. Epub 2022 Jul 6.
Volumetric capacitance is a more critical performance parameter for rechargeable power supply in lightweight and microelectronic devices as compared to gravimetric capacitance in larger devices. To this end, we report three electrochromic metallopolymer-based electrode materials containing Fe as the coordinating metal ion with high volumetric capacitance and energy densities in a symmetric two-electrode supercapacitor setup. These metallopolymers exhibited volumetric capacitance up to 866.2 F cm at a constant current density of 0.25 A g. The volumetric capacitance (: 544.6 F cm > : 313.8 F cm > : 230.8 F cm at 1 A g) and energy densities (: 75.5 mWh cm > : 43.6 mWh cm > : 31.2 mWh cm) followed the order of the electrical conductivity of the metallopolymers and are among the best values reported for metal-organic systems. The variation in the ligand structure was key toward achieving different electrical conductivities in these metallopolymers with excellent operational stability under continuous cycling. High volumetric capacitances and energy densities combined with tunable electro-optical properties and electrochromic behavior of these metallopolymers are expected to contribute to high performance and compact microenergy storage systems. We envision that the integration of smart functionalities with thin film supercapacitors would warrant the surge of miniaturized on-chip microsupercapacitors integrated in-plane with other microelectronic devices for wearable applications.
与大型设备中的质量电容相比,体积电容对于轻型和微电子设备中的可充电电源而言是一个更为关键的性能参数。为此,我们报道了三种基于电致变色金属聚合物的电极材料,它们含有铁作为配位金属离子,在对称双电极超级电容器装置中具有高体积电容和能量密度。在0.25 A g的恒定电流密度下,这些金属聚合物的体积电容高达866.2 F cm 。体积电容(在1 A g时:544.6 F cm > 313.8 F cm > 230.8 F cm )和能量密度(:75.5 mWh cm > 43.6 mWh cm > 31.2 mWh cm )遵循金属聚合物的电导率顺序,并且是金属有机体系报道的最佳值之一。配体结构的变化是在这些金属聚合物中实现不同电导率的关键,且在连续循环下具有出色的操作稳定性。这些金属聚合物的高体积电容和能量密度,以及可调谐的电光特性和电致变色行为,有望为高性能和紧凑型微能量存储系统做出贡献。我们设想,将智能功能与薄膜超级电容器集成,将推动与其他微电子设备平面内集成的小型片上微型超级电容器在可穿戴应用中的激增。