State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
Macromol Rapid Commun. 2023 Oct;44(20):e2300309. doi: 10.1002/marc.202300309. Epub 2023 Aug 2.
With the rapid development of energy storage technology, the operation of portable and wearable devices is inseparable from high energy density power supplies. However, the demand for high performance supercapacitors in movable smart electronics is still restrained by their insufficient areal capacitance and limited power/energy densities. In addition, some electroactive materials, including metal oxides, conductive polymers, graphene, porous carbons, etc., are inevitable to use extra adhesives for the preparation of electrode materials. In this work, integrated hierarchical graphitic porous carbon membranes used as the electrodes without adhesives are successfully synthesized, via pyrolyzing poly(ionic liquid)s (PILs)-metal organic frameworks (MOFs) composite membranes. The asymmetric supercapacitor is assembled by the carbonized PIL-MOF composite membrane and PILs-derived porous carbon membrane, and exhibits significant areal capacitance with remarkable power and energy densities. In the two-electrode system, the areal capacitance can reach 9.5 F cm with an energy density of 1.91 mWh cm . In the fabricated all-solid-state supercapacitors, the areal capacitance and energy density achieved 3.2 F cm and 0.65 mWh cm , respectively, exceeding most reported ones. Therefore, the integrated carbon membrane electrodes with high areal capacitance reveal great potential in miniaturized devices, and further show a wider application scope through regulating PILs.
随着储能技术的快速发展,便携式和可穿戴设备的运行离不开高能量密度的电源。然而,在可移动的智能电子产品中,对高性能超级电容器的需求仍然受到其面电容不足和有限的功率/能量密度的限制。此外,一些电活性材料,包括金属氧化物、导电聚合物、石墨烯、多孔碳等,在制备电极材料时不可避免地要使用额外的粘合剂。在这项工作中,通过在聚(离子液体)-金属有机骨架(MOF)复合膜中热解,成功地合成了用作无粘合剂电极的集成分级石墨多孔碳膜。通过碳化 PIL-MOF 复合膜和 PIL 衍生的多孔碳膜组装了非对称超级电容器,具有显著的面电容,具有显著的功率和能量密度。在两电极系统中,面电容可达 9.5 F cm,能量密度为 1.91 mWh cm。在制备的全固态超级电容器中,面电容和能量密度分别达到 3.2 F cm 和 0.65 mWh cm,超过了大多数报道的值。因此,具有高面电容的集成碳膜电极在小型化设备中具有巨大的潜力,并通过调节 PIL 进一步展示了更广泛的应用范围。