Suppr超能文献

通过外观调整网络增强医学图像配准。

Enhancing medical image registration via appearance adjustment networks.

机构信息

School of Computer Science, the University of Sydney, Australia.

School of Computer Science, the University of Sydney, Australia.

出版信息

Neuroimage. 2022 Oct 1;259:119444. doi: 10.1016/j.neuroimage.2022.119444. Epub 2022 Jul 2.

Abstract

Deformable image registration is fundamental for many medical image analyses. A key obstacle for accurate image registration lies in image appearance variations such as the variations in texture, intensities, and noise. These variations are readily apparent in medical images, especially in brain images where registration is frequently used. Recently, deep learning-based registration methods (DLRs), using deep neural networks, have shown computational efficiency that is several orders of magnitude faster than traditional optimization-based registration methods (ORs). DLRs rely on a globally optimized network that is trained with a set of training samples to achieve faster registration. DLRs tend, however, to disregard the target-pair-specific optimization inherent in ORs and thus have degraded adaptability to variations in testing samples. This limitation is severe for registering medical images with large appearance variations, especially since few existing DLRs explicitly take into account appearance variations. In this study, we propose an Appearance Adjustment Network (AAN) to enhance the adaptability of DLRs to appearance variations. Our AAN, when integrated into a DLR, provides appearance transformations to reduce the appearance variations during registration. In addition, we propose an anatomy-constrained loss function through which our AAN generates anatomy-preserving transformations. Our AAN has been purposely designed to be readily inserted into a wide range of DLRs and can be trained cooperatively in an unsupervised and end-to-end manner. We evaluated our AAN with three state-of-the-art DLRs - Voxelmorph (VM), Diffeomorphic Voxelmorph (DifVM), and Laplacian Pyramid Image Registration Network (LapIRN) - on three well-established public datasets of 3D brain magnetic resonance imaging (MRI) - IBSR18, Mindboggle101, and LPBA40. The results show that our AAN consistently improved existing DLRs and outperformed state-of-the-art ORs on registration accuracy, while adding a fractional computational load to existing DLRs.

摘要

变形图像配准是许多医学图像分析的基础。准确图像配准的一个关键障碍在于图像外观的变化,例如纹理、强度和噪声的变化。这些变化在医学图像中很明显,尤其是在经常使用配准的脑图像中。最近,基于深度学习的配准方法(DLR)使用深度神经网络,显示出比传统基于优化的配准方法(OR)快几个数量级的计算效率。DLR 依赖于一个全局优化的网络,该网络使用一组训练样本进行训练,以实现更快的注册。然而,DLR 往往忽略了 OR 固有的目标对特定优化,因此对测试样本的变化适应性较差。对于具有较大外观变化的医学图像进行配准,这一限制非常严重,尤其是因为很少有现有的 DLR 明确考虑到外观变化。在这项研究中,我们提出了一种外观调整网络(AAN),以增强 DLR 对外观变化的适应性。我们的 AAN 集成到 DLR 中,可以提供外观变换来减少配准过程中的外观变化。此外,我们通过提出一种解剖约束损失函数,使我们的 AAN 生成保持解剖结构的变换。我们的 AAN 是专门设计的,可以很容易地插入到各种 DLR 中,并可以以无监督和端到端的方式进行协作训练。我们在三个成熟的公共 3D 脑磁共振成像(MRI)数据集 IBSR18、Mindboggle101 和 LPBA40 上,用三种最先进的 DLR(Voxelmorph(VM)、Diffeomorphic Voxelmorph(DifVM)和拉普拉斯金字塔图像配准网络(LapIRN))评估了我们的 AAN。结果表明,我们的 AAN 一致地提高了现有的 DLR,并在注册精度上优于最先进的 OR,同时对现有的 DLR 增加了少量的计算负荷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验