Institute for Integrative Systems Biology (I2SysBio), CSIC─Universitat de València, Paterna 46980, Spain.
Instituto de Biología Molecular y Celular de Plantas, CSIC─Universitat Politècnica de València, València 46022, Spain.
ACS Synth Biol. 2022 Jul 15;11(7):2384-2393. doi: 10.1021/acssynbio.2c00090. Epub 2022 Jul 6.
Viral infections in plants threaten food security. Thus, simple and effective methods for virus detection are required to adopt early measures that can prevent virus spread. However, current methods based on the amplification of the viral genome by polymerase chain reaction (PCR) require laboratory conditions. Here, we exploited the CRISPR-Cas12a and CRISPR-Cas13a/d systems to detect three RNA viruses, namely, , , and , in plants. We applied the CRISPR-Cas12a system to detect viral DNA amplicons generated by PCR or isothermal amplification, and we also performed a multiplexed detection in plants with mixed infections. In addition, we adapted the detection system to bypass the costly RNA purification step and to get a visible readout with lateral flow strips. Finally, we applied the CRISPR-Cas13a/d system to directly detect viral RNA, thereby avoiding the necessity of a preamplification step and obtaining a readout that scales with the viral load. These approaches allow for the performance of viral diagnostics within half an hour of leaf harvest and are hence potentially relevant for field-deployable applications.
植物病毒感染威胁着粮食安全。因此,需要采用简单有效的病毒检测方法,以便及时采取措施防止病毒传播。然而,目前基于聚合酶链反应(PCR)扩增病毒基因组的方法需要实验室条件。在这里,我们利用 CRISPR-Cas12a 和 CRISPR-Cas13a/d 系统来检测三种 RNA 病毒,即 、 、 和 ,在 植物中。我们将 CRISPR-Cas12a 系统应用于检测由 PCR 或等温扩增产生的病毒 DNA 扩增子,并且我们还在混合感染的植物中进行了多重检测。此外,我们对检测系统进行了调整,以绕过昂贵的 RNA 纯化步骤,并通过侧流条获得可见的读数。最后,我们将 CRISPR-Cas13a/d 系统应用于直接检测病毒 RNA,从而避免了预扩增步骤,并获得了与病毒载量成正比的读数。这些方法可以在叶片收获后半小时内进行病毒诊断,因此可能适用于现场应用。