Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Int J Biol Macromol. 2022 Sep 1;216:397-413. doi: 10.1016/j.ijbiomac.2022.06.204. Epub 2022 Jul 4.
The paper demonstrates curcumin/β-cyclodextrin-based inclusion complex (IC) loaded polyvinyl alcohol (PVA) dip-coated and copolymer-compatibilized polylactic acid (PLA)/poly(ε-caprolactone) (PCL) blend-based electrospun mats (EMs) as antibacterial, and suture-resistant constructs, to overcome the present challenges in developing structurally-stable, biocompatible, pliable, and stand-alone multifunctional-biomedical-devices. The thermal, microstructural, and viscoelastic characterization confirmed the presence of H-bonding interactions between IC and PVA moieties and between IC incorporated PVA matrix with the copolymer-mediated nanotextured PLA/PCL blend-based EMs. IC release and surface PVA erosion induced a decrease in modulus (>4-fold) and strength (>2-fold) of constructs (post-release). Mechanistically new and architectural-framework-defined PVA-gelation induced bi-axially diverted suture-failure (post-release) and resulted in a significant enhancement in suture-retention-strength (>3-fold), energy (>5-fold), and displacement (>2-fold) for 20 wt% IC-loaded-PVA-coated EM-constructs. The fabricated EM-constructs exhibited improvement in surface-hydrophilicity (contact angle ~45°), surface nano-roughness ( 600 nm), surface area (34 m/g), pore volume (3.6 × 10 cc/g), IC release efficacy (20 % burst release), antibacterial activity (adherent bacteria <10 %) against E. coli and S. aureus, and L929 fibroblast-cell-viability (135 %), which varied as a function of IC-content in the PVA matrix. Our study conceptually establishes a novel and efficient technique for designing antibacterial, suture-resistant engineered-EM-constructs with tunable properties for their potential use in wound-dressings, periodontal-membranes, drug-delivery, and regenerative-systems.
本文展示了基于姜黄素/β-环糊精的包合物(IC)负载聚乙烯醇(PVA)的 dip 涂层和共聚相容化聚乳酸(PLA)/聚(ε-己内酯)(PCL)共混物的静电纺丝膜(EMs)作为抗菌和抗缝合的结构,以克服目前在开发结构稳定、生物相容、柔韧和独立的多功能生物医学设备方面的挑战。热、微观结构和粘弹性特性证实了 IC 和 PVA 部分之间以及 IC 掺入的 PVA 基质与共聚物介导的纳米结构 PLA/PCL 共混物之间存在氢键相互作用。IC 释放和表面 PVA 侵蚀导致构建物的模量(>4 倍)和强度(>2 倍)降低(释放后)。从机制上讲,新的和架构定义的 PVA 凝胶化诱导双轴转向缝合失效(释放后),并导致缝合保持强度(>3 倍)、能量(>5 倍)和位移(>2 倍)显著提高,用于20 wt%IC 负载 PVA 涂层 EM 构建物。所制备的 EM 构建物的表面润湿性(接触角约 45°)、表面纳米粗糙度(600nm)、比表面积(34m/g)、孔体积(3.6×10cc/g)、IC 释放效果(20%的突释)、抗菌活性(粘附细菌<10%)对大肠杆菌和金黄色葡萄球菌,以及 L929 成纤维细胞活力(135%)均得到改善,这些性质均随 PVA 基质中 IC 含量的变化而变化。我们的研究概念性地建立了一种新颖而有效的技术,用于设计具有可调性能的抗菌、抗缝合的工程 EM 构建物,用于潜在的伤口敷料、牙周膜、药物输送和再生系统。