Suppr超能文献

合理设计均匀附着于三边碳活性位点的分级SnS以增强钠存储性能

Rational Design Hierarchical SnS Uniformly Adhered to Three-Sided Carbon Active Sites to Enhance Sodium Storage.

作者信息

Wu Xiaoyu, Xu Lin, Wang JianHua, Dong Yan, Wang Rui, Shi Qiaofang, Diao Guowang, Chen Ming, Lv Rongguan

机构信息

College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.

College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224000, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2022 Jul 20;14(28):32096-32104. doi: 10.1021/acsami.2c08253. Epub 2022 Jul 6.

Abstract

Reducing material accumulation and designing reasonable sizes are critical strategies for increasing the rate and cycling stability of electrode materials. Herein, we presented a double-walled hollow carbon spheres (DWHCSs) loading strategy for achieving ultrafine SnS nanosheet adhesion by utilizing three-sided active sites of the interior/exterior carbon walls. The structure effectively shortened the electron/ion transport path, increased the effective contact between electrolyte and electrode material, and promoted ion diffusion kinetics. Furthermore, the hollow structure can adapt to the volume change of the electrode during the cycle, preventing active substances from draining. Based on the above advantages, SnS@DWHCSs as an anode material for sodium ion batteries (SIBs) exhibited a distinguished reversible capacity of 665.7 mA h g at 2 A g after 1000 cycles, and a superior rate ability of 377.6 mA h g at an ultrahigh rate of 10 A g. The outstanding electrochemical performance revealed that the structure exhibited a broad application prospect in the field of energy storage and provided a reference for the rational design of other 2D materials.

摘要

减少材料堆积并设计合理尺寸是提高电极材料倍率性能和循环稳定性的关键策略。在此,我们提出了一种双壁空心碳球(DWHCSs)负载策略,通过利用内部/外部碳壁的三边活性位点来实现超细SnS纳米片的附着。该结构有效缩短了电子/离子传输路径,增加了电解质与电极材料之间的有效接触,并促进了离子扩散动力学。此外,空心结构能够适应电极在循环过程中的体积变化,防止活性物质流失。基于上述优点,SnS@DWHCSs作为钠离子电池(SIBs)的负极材料,在1000次循环后,在2 A g电流密度下表现出665.7 mA h g的出色可逆容量,在10 A g的超高电流密度下表现出377.6 mA h g的优异倍率性能。出色的电化学性能表明,该结构在储能领域具有广阔的应用前景,并为其他二维材料的合理设计提供了参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验