Quantum Materials Theory, Istituto Italiano di Tecnologia, Genova, Italy.
Scuola Normale Superiore di Pisa, Pisa, Italy.
Nature. 2022 Jul;607(7917):81-85. doi: 10.1038/s41586-022-04851-6. Epub 2022 Jul 6.
Electric control of magnetism and magnetic control of ferroelectricity can improve the energy efficiency of magnetic memory and data-processing devices. However, the necessary magnetoelectric switching is hard to achieve, and requires more than just a coupling between the spin and the charge degrees of freedom. Here we show that an application and subsequent removal of a magnetic field reverses the electric polarization of the multiferroic GdMnO, thus requiring two cycles to bring the system back to the original configuration. During this unusual hysteresis loop, four states with different magnetic configurations are visited by the system, with one half of all spins undergoing unidirectional full-circle rotation in increments of about 90 degrees. Therefore, GdMnO acts as a magnetic crankshaft that converts the back-and-forth variations of the magnetic field into a circular spin motion. This peculiar four-state magnetoelectric switching emerges as a topologically protected boundary between different two-state switching regimes. Our findings establish a paradigm of topologically protected switching phenomena in ferroic materials.
电控制磁性和磁控制铁电性可以提高磁记忆和数据处理设备的能量效率。然而,必要的磁电开关很难实现,并且不仅仅需要自旋和电荷自由度之间的耦合。在这里,我们表明施加和随后移除磁场会反转多铁性 GdMnO 的电极化,从而需要两个循环才能使系统恢复到原始配置。在这个不寻常的滞后回线中,系统经历了四个具有不同磁构型的状态,所有自旋的一半以约 90 度的增量进行单向全圆旋转。因此,GdMnO 充当磁曲轴,将磁场的来回变化转换为圆形自旋运动。这种特殊的四态磁电开关作为不同两态开关状态之间的拓扑保护边界出现。我们的发现为铁电材料中的拓扑保护开关现象确立了一个范例。