Suppr超能文献

原子工程化铁电层产生室温磁电多铁性材料。

Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic.

作者信息

Mundy Julia A, Brooks Charles M, Holtz Megan E, Moyer Jarrett A, Das Hena, Rébola Alejandro F, Heron John T, Clarkson James D, Disseler Steven M, Liu Zhiqi, Farhan Alan, Held Rainer, Hovden Robert, Padgett Elliot, Mao Qingyun, Paik Hanjong, Misra Rajiv, Kourkoutis Lena F, Arenholz Elke, Scholl Andreas, Borchers Julie A, Ratcliff William D, Ramesh Ramamoorthy, Fennie Craig J, Schiffer Peter, Muller David A, Schlom Darrell G

机构信息

School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.

Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA.

出版信息

Nature. 2016 Sep 22;537(7621):523-7. doi: 10.1038/nature19343.

Abstract

Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3-the geometric ferroelectric with the greatest known planar rumpling-we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially-from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

摘要

在其电基态和磁基态中同时呈现有序性的材料,有望用于下一代由电场控制磁性的存储设备。然而,由于对位移铁电性和磁性的相互竞争要求,这类材料极其罕见。尽管最近发现了几种新的多铁性材料和磁电耦合机制,但已知的单相多铁性材料仍受反铁磁或弱铁磁排列、序参量之间缺乏耦合,或仅在远低于室温时才出现相关特性的限制,因而无法用于设备。在此,我们提出一种构建单相多铁性材料的方法,该材料在室温附近铁电性与强磁有序性相耦合。从六角形的LuFeO₃(已知具有最大平面褶皱的几何铁电体)开始,我们在生长过程中引入单层FeO,以在LuFeO₃基体中构建化学式单元厚度的亚铁磁性LuFe₂O₄句法层,即(LuFeO₃)m/(LuFe₂O₄)1超晶格。相邻的LuFeO₃施加的严重褶皱将亚铁磁性LuFe₂O₄驱动到同时具有铁电态的状态,同时也减少了LuFe₂O₄的自旋失配。这大幅提高了磁转变温度——从LuFe₂O₄的240开尔文(参考文献18)提高到(LuFeO₃)9/(LuFe₂O₄)1的281开尔文。此外,铁电序与亚铁磁性耦合,从而能够在200开尔文下直接通过电场控制磁性。我们的结果展示了一种通过利用几何失配、晶格畸变和外延工程相结合来制造更高温度磁电多铁性材料的设计方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验