Zhang Milan, Tong Jiayi, Ma Weifeng, Luo Chongliang, Liu Huiqin, Jiang Yushu, Qin Lingzhi, Wang Xiaojuan, Yuan Lipin, Zhang Jiewen, Peng Fuhua, Chen Yong, Li Wei, Jiang Ying
Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States.
Front Oncol. 2022 Jun 10;12:903851. doi: 10.3389/fonc.2022.903851. eCollection 2022.
To explore prognostic indicators of lung adenocarcinoma with leptomeningeal metastases (LM) and provide an updated graded prognostic assessment model integrated with molecular alterations (molGPA).
A cohort of 162 patients was enrolled from 202 patients with lung adenocarcinoma and LM. By randomly splitting data into the training (80%) and validation (20%) sets, the Cox regression and random survival forest methods were used on the training set to identify statistically significant variables and construct a prognostic model. The C-index of the model was calculated and compared with that of previous molGPA models.
The Cox regression and random forest models both identified four variables, which included KPS, LANO neurological assessment, TKI therapy line, and controlled primary tumor, as statistically significant predictors. A novel targeted-therapy-assisted molGPA model (2022) using the above four prognostic factors was developed to predict LM of lung adenocarcinoma. The C-indices of this prognostic model in the training and validation sets were higher than those of the lung-molGPA (2017) and molGPA (2019) models.
The 2022 molGPA model, a substantial update of previous molGPA models with better prediction performance, may be useful in clinical decision making and stratification of future clinical trials.
探讨肺腺癌伴软脑膜转移(LM)的预后指标,并提供一个整合分子改变的更新的分级预后评估模型(molGPA)。
从202例肺腺癌伴LM患者中纳入162例患者。通过将数据随机分为训练集(80%)和验证集(20%),在训练集上使用Cox回归和随机生存森林方法来识别具有统计学意义的变量并构建预后模型。计算模型的C指数,并与先前的molGPA模型进行比较。
Cox回归模型和随机森林模型均确定了四个具有统计学意义的预测变量,包括KPS、LANO神经学评估、TKI治疗线数和原发肿瘤控制情况。利用上述四个预后因素开发了一种新的靶向治疗辅助molGPA模型(2022年)来预测肺腺癌的LM。该预后模型在训练集和验证集中的C指数高于肺molGPA(2017年)和molGPA(2019年)模型。
2022年molGPA模型是对先前molGPA模型的实质性更新,具有更好的预测性能,可能有助于临床决策和未来临床试验的分层。