Lee Jihyun, Beretvas S Natasha
Quantitative Methods, Educational Psychology Department, The University of Texas at Austin, Austin, Texas, USA.
Res Synth Methods. 2023 Jan;14(1):117-136. doi: 10.1002/jrsm.1585. Epub 2022 Aug 8.
Meta-analysts often encounter missing covariate values when estimating meta-regression models. In practice, ad hoc approaches involving data deletion have been widely used. The current study investigates the performance of different methods for handling missing covariates in meta-regression, including complete-case analysis (CCA), shifting-case analysis (SCA), multiple imputation (MI), and full information maximum likelihood (FIML), assuming missing at random mechanism. According to the simulation results, we advocate the use of MI and FIML than CCA and SCA approaches in practice. In addition, we cautiously note the challenges and potential advantages of using MI in the meta-analysis context.
在估计元回归模型时,元分析者经常会遇到协变量值缺失的情况。在实践中,涉及数据删除的临时方法被广泛使用。本研究调查了在元回归中处理缺失协变量的不同方法的性能,包括完全病例分析(CCA)、移位病例分析(SCA)、多重插补(MI)和全信息最大似然估计(FIML),假设数据缺失是随机机制。根据模拟结果,我们提倡在实践中使用MI和FIML而非CCA和SCA方法。此外,我们谨慎地指出了在元分析背景下使用MI的挑战和潜在优势。