Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany.
Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.
Nanoscale. 2022 Jul 21;14(28):10176-10189. doi: 10.1039/d2nr01648f.
Advanced peptide-based nanomaterials composed of self-assembling peptides (SAPs) are of emerging interest in pharmaceutical and biomedical applications. The introduction of fluorine into peptides, in fact, offers unique opportunities to tune their biophysical properties and intermolecular interactions. In particular, the degree of fluorination plays a crucial role in peptide engineering as it can be used to control the characteristics of fluorine-specific interactions and, thus, peptide conformation and self-assembly. Here, we designed and explored a series of amphipathic peptides by incorporating the fluorinated amino acids (2)-4-monofluoroethylglycine (MfeGly), (2)-4,4-difluoroethylglycine (DfeGly) and (2)-4,4,4-trifluoroethylglycine (TfeGly) as hydrophobic components. This approach enabled studying the impact of fluorination on secondary structure formation and peptide self-assembly on a systematic basis. We show that the interplay between polarity and hydrophobicity, both induced differentially by varying degrees of side chain fluorination, does affect peptide folding significantly. A greater degree of fluorination promotes peptide fibrillation and subsequent formation of physical hydrogels in physiological conditions. Molecular simulations revealed the key role played by electrostatically driven intra-chain and inter-chain contact pairs that are modulated by side chain fluorination and give insights into the different self-organization behaviour of selected peptides. Our study provides a systematic report about the distinct features of fluorinated oligomeric peptides with potential applications as peptide-based biomaterials.
由自组装肽 (SAP) 组成的先进肽基纳米材料在药物和生物医学应用中引起了人们的极大兴趣。事实上,将氟引入肽中为调节其物理化学性质和分子间相互作用提供了独特的机会。特别是,氟取代程度在肽工程中起着至关重要的作用,因为它可以用来控制氟特异性相互作用的特性,从而控制肽的构象和自组装。在这里,我们设计并探索了一系列两亲肽,通过将氟代氨基酸 (2)-4-单氟乙基甘氨酸 (MfeGly)、(2)-4,4-二氟乙基甘氨酸 (DfeGly) 和 (2)-4,4,4-三氟乙基甘氨酸 (TfeGly) 作为疏水成分。这种方法可以系统地研究氟取代对二级结构形成和肽自组装的影响。我们表明,极性和疏水性之间的相互作用,都由侧链氟取代程度的不同程度诱导,确实显著影响肽的折叠。更高程度的氟取代促进了肽的原纤维形成,以及在生理条件下随后形成物理水凝胶。分子模拟揭示了侧链氟取代调节的静电驱动的链内和链间接触对在肽折叠中的关键作用,并深入了解所选肽的不同自组织行为。我们的研究提供了关于具有潜在应用的基于肽的生物材料的氟化寡肽的不同特征的系统报告。