文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Fluorinated Protein and Peptide Materials for Biomedical Applications.

作者信息

Monkovic Julia M, Gibson Halle, Sun Jonathan W, Montclare Jin Kim

机构信息

Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.

Department of Chemistry, New York University, New York, NY 10003, USA.

出版信息

Pharmaceuticals (Basel). 2022 Sep 28;15(10):1201. doi: 10.3390/ph15101201.


DOI:10.3390/ph15101201
PMID:36297312
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9609677/
Abstract

Fluorination represents one of the most powerful modern design strategies to impart biomacromolecules with unique functionality, empowering them for widespread application in the biomedical realm. However, the properties of fluorinated protein materials remain unpredictable due to the heavy context-dependency of the surrounding atoms influenced by fluorine's strong electron-withdrawing tendencies. This review aims to discern patterns and elucidate design principles governing the biochemical synthesis and rational installation of fluorine into protein and peptide sequences for diverse biomedical applications. Several case studies are presented to deconvolute the overgeneralized fluorous stabilization effect and critically examine the duplicitous nature of the resultant enhanced chemical and thermostability as it applies to use as biomimetic therapeutics, drug delivery vehicles, and bioimaging modalities.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/59e51d129b8b/pharmaceuticals-15-01201-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/780de67e6904/pharmaceuticals-15-01201-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/701590cbabdd/pharmaceuticals-15-01201-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/4b9141f09e1c/pharmaceuticals-15-01201-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/344951a43251/pharmaceuticals-15-01201-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/c2e14ed0c1c5/pharmaceuticals-15-01201-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/a139a8b52dcc/pharmaceuticals-15-01201-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/33ea87d97f40/pharmaceuticals-15-01201-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/812b9c47670f/pharmaceuticals-15-01201-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/babb2f544416/pharmaceuticals-15-01201-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/9579891cfcf3/pharmaceuticals-15-01201-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/14ba48cc729f/pharmaceuticals-15-01201-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/721a57e57d7f/pharmaceuticals-15-01201-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/bf9f6c3dc89c/pharmaceuticals-15-01201-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/2a898bfc0802/pharmaceuticals-15-01201-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/78aeb48d3ea3/pharmaceuticals-15-01201-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/29ad668b660d/pharmaceuticals-15-01201-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/f62701c39b7c/pharmaceuticals-15-01201-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/59e51d129b8b/pharmaceuticals-15-01201-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/780de67e6904/pharmaceuticals-15-01201-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/701590cbabdd/pharmaceuticals-15-01201-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/4b9141f09e1c/pharmaceuticals-15-01201-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/344951a43251/pharmaceuticals-15-01201-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/c2e14ed0c1c5/pharmaceuticals-15-01201-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/a139a8b52dcc/pharmaceuticals-15-01201-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/33ea87d97f40/pharmaceuticals-15-01201-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/812b9c47670f/pharmaceuticals-15-01201-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/babb2f544416/pharmaceuticals-15-01201-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/9579891cfcf3/pharmaceuticals-15-01201-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/14ba48cc729f/pharmaceuticals-15-01201-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/721a57e57d7f/pharmaceuticals-15-01201-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/bf9f6c3dc89c/pharmaceuticals-15-01201-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/2a898bfc0802/pharmaceuticals-15-01201-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/78aeb48d3ea3/pharmaceuticals-15-01201-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/29ad668b660d/pharmaceuticals-15-01201-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/f62701c39b7c/pharmaceuticals-15-01201-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/9609677/59e51d129b8b/pharmaceuticals-15-01201-g018.jpg

相似文献

[1]
Fluorinated Protein and Peptide Materials for Biomedical Applications.

Pharmaceuticals (Basel). 2022-9-28

[2]
Deciphering the Fluorine Code-The Many Hats Fluorine Wears in a Protein Environment.

Acc Chem Res. 2017-8-12

[3]
Fluorinated peptide biomaterials.

Pept Sci (Hoboken). 2021-3

[4]
Fluorine in protein environments: a QM and MD study.

J Phys Chem B. 2009-12-24

[5]
Fluorinated proteins: from design and synthesis to structure and stability.

Acc Chem Res. 2014-6-2

[6]
Fluorinated Nucleosides: Synthesis, Modulation in Conformation and Therapeutic Application.

Chem Rec. 2022-5

[7]
Diverse role, structural trends, and applications of fluorinated sulphonamide compounds in agrochemical and pharmaceutical fields.

Heliyon. 2024-6-8

[8]
Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity.

Expert Opin Drug Metab Toxicol. 2015-4

[9]
Rational design of amphiphilic fluorinated peptides: evaluation of self-assembly properties and hydrogel formation.

Nanoscale. 2022-7-21

[10]
Design and synthesis of fluorinated peptides for analysis of fluorous effects on the interconversion of polyproline helices.

Bioorg Chem. 2022-2

引用本文的文献

[1]
Peptide-Based Biomaterials as a Promising Tool for Cancer Radiotherapy.

Adv Sci (Weinh). 2025-8

[2]
Multiplex Trifluoromethyl and Hydroxyl Radical Chemistry Enables High-Resolution Protein Footprinting.

Anal Chem. 2025-1-14

[3]
Highly Enantioselective Decarboxylative Difluoromethylation.

J Am Chem Soc. 2024-10-30

[4]
Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation.

Chem Rev. 2024-8-14

[5]
Decorating phenylalanine side-chains with triple labeled C/F/H isotope patterns.

J Biomol NMR. 2024-9

[6]
Protein-Engineered Fibers For Drug Encapsulation Traceable via F Magnetic Resonance.

ACS Appl Nano Mater. 2023-11-6

[7]
Rapid Biomolecular Trifluoromethylation Using Cationic Aromatic Sulfonate Esters as Visible-Light-Triggered Radical Photocages.

J Am Chem Soc. 2023-10-25

本文引用的文献

[1]
Rational design of amphiphilic fluorinated peptides: evaluation of self-assembly properties and hydrogel formation.

Nanoscale. 2022-7-21

[2]
Peptidomimetics: An Overview of Recent Medicinal Chemistry Efforts toward the Discovery of Novel Small Molecule Inhibitors.

J Med Chem. 2022-6-9

[3]
Protein Based Biomaterials for Therapeutic and Diagnostic Applications.

Prog Biomed Eng (Bristol). 2022-1

[4]
Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics.

Molecules. 2021-12-6

[5]
Antiviral Activity of Peptide-Based Assemblies.

ACS Appl Mater Interfaces. 2021-10-20

[6]
Fluorinated peptide biomaterials.

Pept Sci (Hoboken). 2021-3

[7]
Low Molecular Weight Supramolecular Hydrogels for Sustained and Localized Drug Delivery.

ACS Appl Bio Mater. 2019-4-4

[8]
Observation of the Exotic Isotope ^{13}F Located Four Neutrons beyond the Proton Drip Line.

Phys Rev Lett. 2021-4-2

[9]
Diagnostic Role of F-PSMA-1007 PET/CT in Prostate Cancer Staging: A Systematic Review.

Diagnostics (Basel). 2021-3-19

[10]
Steric-Free Bioorthogonal Labeling of Acetylation Substrates Based on a Fluorine-Thiol Displacement Reaction.

J Am Chem Soc. 2021-1-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索