Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy.
Nanoscale. 2022 Jul 21;14(28):10190-10199. doi: 10.1039/d2nr02027k.
The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques ( UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against . Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established biofilm.
通过将生物活性分子嫁接到纳米材料表面,可以对其进行工程设计,从而控制其生物学特性,获得具有可调理化和生物学特性的功能材料,以满足特定应用的需求。然后,纳米材料表面的制造工艺对其发展和创新有重大影响。在这方面,我们通过利用绿色制造工艺,即利用振动球磨机,报告了在氧化石墨烯(GO)表面接枝糖基头基的情况,该制造工艺依赖于使用振动球磨机,在振动球磨机中,能量通过与封闭和振动容器内的玛瑙球碰撞传递给反应物质。通过一系列互补的先进技术(UV-vis 和 Raman 光谱、透射电子显微镜和 Magic Angle Spinning (MAS) 固态 NMR(ssNMR)的组合,评估了所得糖基氧化石墨烯缀合物(glyco-GO)的化学组成和形态,提供了对 GO 在机械化学途径中化学反应性的深入了解。单糖残基接枝到 GO 表面显著提高了原始 GO 对 的抗菌活性。实际上,根据安装在 GO 表面上的单糖衍生物,糖基 GO 缀合物会影响浮游细胞在集落形成测定中黏附到聚苯乙烯表面的能力。扫描电子显微镜图像清楚地表明,糖基 GO 缀合物可显著破坏已建立的生物膜。