Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia.
Orig Life Evol Biosph. 2022 Sep;52(1-3):113-128. doi: 10.1007/s11084-022-09625-8. Epub 2022 Jul 7.
The evolutionary origin of the oxygen-evolving complex (OEC) in the photosystem II (PSII) is still unclear, as is the nature of electron source for the photosystem before the OEC had appeared. Johnson et al. (in PNAS 110:11238, 2013) speculated that Mn(II) cations were the source of electrons for transitional photosystems. However, Archean oceans also contained Fe(II) cations at concentrations comparable or higher than that of Mn(II). Fe(II) cations can bind to the high-affinity (НА) Mn-binding site in the OEC (Semin et al. in Biochemistry 41:5854, 2002). Now we have investigated the competitive interaction of Mn(II) and Fe(II) cations with the HA site in the Mn-depleted PSII membranes (PSII[-Mn]). Fe cations, oxidized under illumination, bind strongly to the HA site and, thus, prevent the interaction of Mn(II) with this site. If the Mn(II) and Fe(II) cations, at relatively equal concentration, are simultaneously present in the buffer, together with PSII(-Mn) membranes, there is competition between these two cations for the binding site, which manifests itself in partial inhibition of the Mn(II) oxidation and the blocking of the HA site by Fe(II) cations. If the concentration of Fe(II) cations is several times higher than the concentration of Mn(II), the HA site is completely blocked and the oxidation of Mn(II) cations is inhibited; under saturating light, the effectiveness of this inhibitory effect increases. This may be due to the generation of HO on the acceptor side of the photosystem, which significantly accelerates the rate of the turnover reaction of Mn(II) on the HA site.
在光合作用 II(PSII)中,氧气产生复合物(OEC)的进化起源仍然不清楚,在 OEC 出现之前,光合作用系统的电子来源的性质也不清楚。Johnson 等人(在 PNAS 110:11238, 2013 年)推测 Mn(II)阳离子是过渡性光合作用系统的电子来源。然而,太古宙海洋中也含有与 Mn(II)浓度相当或更高的 Fe(II)阳离子。Fe(II)阳离子可以与 OEC 中的高亲和力(НА)Mn 结合位点结合(Semin 等人在 Biochemistry 41:5854, 2002 年)。现在我们已经研究了 Mn(II)和 Fe(II)阳离子与 Mn 耗尽的 PSII 膜(PSII[-Mn])中的 HA 位点的竞争相互作用。在光照下被氧化的 Fe 阳离子强烈结合到 HA 位点,从而阻止 Mn(II)与该位点的相互作用。如果 Mn(II)和 Fe(II)阳离子在相对相等的浓度下,与 PSII(-Mn)膜一起存在于缓冲液中,那么这两种阳离子之间就会存在结合位点的竞争,这表现为 Mn(II)氧化的部分抑制和 HA 位点被 Fe(II)阳离子封锁。如果 Fe(II)阳离子的浓度是 Mn(II)阳离子的几倍,那么 HA 位点就会被完全封锁,Mn(II)阳离子的氧化就会被抑制;在饱和光下,这种抑制作用的效果会增加。这可能是由于在光合作用系统的受体侧产生了 HO,这显著加速了 Mn(II)在 HA 位点上的周转率反应的速率。