BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain.
Division of Cardiovascular Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
J Interv Card Electrophysiol. 2023 Aug;66(5):1085-1093. doi: 10.1007/s10840-022-01292-z. Epub 2022 Jul 7.
Pilot clinical studies suggest that very high power-very short duration (vHPvSD, 90 W/4 s, 360 J energy) is a feasible and safe technique for ablation of atrial fibrillation (AF), compared with standard applications using moderate power-moderate duration (30 W/30 s, 900 J energy). However, it is unclear whether alternate power and duration settings for the delivery of the same total energy would result in similar lesion formation. This study compares temperature dynamics and lesion size at different power-duration settings for the delivery of equivalent total energy (360 J).
An in silico model of radiofrequency (RF) ablation was created using the Arrhenius function to estimate lesion size under different power-duration settings with energy balanced at 360 J: 30 W/12 s (MPSD), 50 W/7.2 s (HPSD), and 90 W/4 s (vHPvSD). Three catheter orientations were considered: parallel, 45°, and perpendicular.
In homogenous tissue, vHPvSD and HPSD produced similar size lesions independent of catheter orientation, both of which were slightly larger than MPSD (lesion size 0.1 mm deeper, ~ 0.7 mm wider, and ~ 25 mm larger volume). When considering heterogeneous tissue, these differences were smaller. Tissue reached higher absolute temperature with vHPvSD and HPSD (5-8 °C higher), which might increase risk of collateral tissue injury or steam pops.
Ablation for AF using MPSD or HPSD may be a feasible alternative to vHPvSD ablation given similar size lesions with similar total energy delivery (360 J). Lower absolute tissue temperature and slower heating may reduce risk of collateral tissue injury and steam pops associated with vHPvSD and longer applications using moderate power.
初步临床研究表明,与标准应用的中功率-中时长(30 W/30 s,900 J 能量)相比,超高功率-超短时长(vHPvSD,90 W/4 s,360 J 能量)是一种可行且安全的用于治疗房颤(AF)的技术。然而,目前尚不清楚是否可以使用不同的功率-时长设置来输送相同的总能量,从而获得类似的消融效果。本研究比较了在输送相同总能量(360 J)时,不同功率-时长设置下的温度动态和消融灶大小。
使用阿仑尼乌斯(Arrhenius)函数创建了一个射频(RF)消融的计算模型,以估计不同功率-时长设置下的消融灶大小,能量平衡在 360 J 时:30 W/12 s(MPSD)、50 W/7.2 s(HPSD)和 90 W/4 s(vHPvSD)。考虑了三种导管方向:平行、45°和垂直。
在均质组织中,vHPvSD 和 HPSD 产生了相似大小的消融灶,与导管方向无关,这两种消融灶都比 MPSD 略大(消融灶深度深 0.1 mm,宽 0.7 mm,体积大 25 mm)。在考虑异质组织时,这些差异较小。vHPvSD 和 HPSD 使组织达到更高的绝对温度(高 5-8°C),这可能会增加旁组织损伤或蒸汽爆裂的风险。
在输送相同总能量(360 J)的情况下,与 vHPvSD 消融相比,使用 MPSD 或 HPSD 进行 AF 消融可能是一种可行的替代方案,因为两者产生的消融灶大小相似。较低的组织绝对温度和较慢的升温可能会降低与 vHPvSD 相关的旁组织损伤和蒸汽爆裂风险,以及与使用中功率较长时间相关的风险。