BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain.
Instituto de Ingeniería Mecánica y Biomecánica, Universitat Politècnica de València, Valencia, Spain.
Comput Biol Med. 2022 May;144:105346. doi: 10.1016/j.compbiomed.2022.105346. Epub 2022 Feb 25.
The state of the art in computer modeling of radiofrequency catheter ablation (RFCA) only considers a static situation, i.e. it ignores ablation electrode displacements induced by tissue movement due to heartbeats. This feature is theoretically required, since heartbeat-induced changes in contact force can be detected during this clinical procedure.
We built a 2D RFCA model coupling electrical, thermal and mechanical problems and simulated a standard energy setting (25 W-30 s). The mechanical interaction between the ablation electrode and tissue was dynamically modeled to reproduce heartbeat-induced changes in the electrode insertion depth from 0.86 to 2.05 mm, which corresponded with contact forces between 10 and 30 g when cardiac tissue was modeled by a hyperelastic Neo-Hookean model with a Young's modulus of 75 kPa and Poisson's ratio of 0.49.
The lesion size computed in the dynamic case was 6.04 mm deep, 9.48 mm maximum width and 6.98 mm surface width, which is within the range of previous experimental results based on a beating heart for a similar energy setting and contact force. The lesion size was practically identical (less than 0.04 mm difference) in the static case with the electrode inserted to an average depth of 1.46 mm (equivalent to 20 g contact force).
The RFCA model including heartbeat-induced electrode displacement predicts lesion depth reasonably well compared to previous experimental results based on a beating heart model.
目前,射频导管消融(RFCA)的计算机建模技术仅考虑静态情况,即忽略了由于心跳引起的组织运动导致的消融电极位移。从理论上讲,这一特性是必需的,因为在这个临床过程中可以检测到由于心跳引起的接触力变化。
我们构建了一个二维 RFCA 模型,将电气、热和机械问题耦合在一起,并模拟了一个标准的能量设置(25 W-30 s)。消融电极与组织之间的机械相互作用被动态建模,以重现电极插入深度从 0.86 到 2.05 mm 的变化,这对应于当心脏组织用杨氏模量为 75 kPa、泊松比为 0.49 的超弹性 neo-Hookean 模型建模时,电极插入深度为 10 至 30 g 之间的接触力。
在动态情况下计算出的病变大小为 6.04mm 深,9.48mm 最大宽度和 6.98mm 表面宽度,这与类似能量设置和接触力下基于跳动心脏的先前实验结果在范围内。在静态情况下,电极插入平均深度为 1.46mm(相当于 20g 接触力)时,病变大小几乎相同(相差小于 0.04mm)。
与基于跳动心脏模型的先前实验结果相比,包含由心跳引起的电极位移的 RFCA 模型能很好地预测病变深度。