Suppr超能文献

开发一种测定工人接触草甘膦个体水平的方法。

Development of a method to determine workers' personal exposure levels to glyphosate.

机构信息

Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, Osaka, Japan.

Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan.

出版信息

J Occup Health. 2022 Jan;64(1):e12345. doi: 10.1002/1348-9585.12345.

Abstract

OBJECTIVES

We aimed to develop a method to determine workers' personal exposure levels to N-(phosphonomethyl)glycine (glyphosate) for their risk assessments.

METHODS

The proposed method was assessed as follows: recovery, stability of samples on storage, method limit of quantification, and reproducibility. Glyphosate in air was sampled using an air-sampling cassette containing a glass fiber filter. Ultrapure water was used to extract glyphosate from sampler filters. After derivation with 9-fluorenylmethyloxycarbonyl chloride, samples were analyzed by high-performance liquid chromatography using a fluorescence detector.

RESULTS

Spiked samples indicated an overall recovery of 101%. After 7 days of storage at 4°C, recoveries were approximately 100%. The method limit of quantification was 0.060 μg/sample. Relative standard deviations representing overall reproducibility, defined as precision, were 1.4%-1.8%.

CONCLUSIONS

The method developed in this study allows 4-h personal exposure monitoring of glyphosate at 0.250-500 μg/m . Thus, this method can be used to estimate worker exposure to glyphosate.

摘要

目的

我们旨在开发一种方法来确定工人接触 N-(膦酸甲基)甘氨酸(草甘膦)的个人暴露水平,以进行风险评估。

方法

评估了以下提出的方法:样品的回收率、储存时的稳定性、方法定量限和重现性。使用含有玻璃纤维过滤器的空气采样盒采集空气中的草甘膦。超纯水用于从采样器过滤器中提取草甘膦。用 9-芴甲氧羰基氯衍生后,通过荧光检测器使用高效液相色谱法对样品进行分析。

结果

加标样品的总回收率为 101%。在 4°C 下储存 7 天后,回收率约为 100%。方法定量限为 0.060μg/样品。代表整体重现性(定义为精密度)的相对标准偏差为 1.4%-1.8%。

结论

本研究中开发的方法允许在 0.250-500μg/m 3的情况下进行 4 小时个人草甘膦暴露监测。因此,该方法可用于估计工人接触草甘膦的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcba/9262121/14e5806ce6f7/JOH2-64-e12345-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验