Li Lili, Fu Jun, Zhang Yu, Chai Tianyou, Albertos Pedro
IEEE Trans Cybern. 2023 Nov;53(11):7150-7161. doi: 10.1109/TCYB.2022.3180294. Epub 2023 Oct 17.
In this article, the event-triggered output regulation problem (EORP) under the denial-of-service (DoS) attacks is considered for networked switched systems (NSSs) with unstable switching dynamics (USDs). The USDs here refer to the unsolvable output regulation of each subsystem and the destabilization at partial switching instants, which indicates that the Lyapunov function does not decrease monotonically in activation intervals of each subsystem and increases at partial switching instants. First, long-duration DoS attacks (LDDAs) are considered, where LDDAs imply that their duration may be longer than the total dwell time (DT) of several adjacent activated subsystems. By imposing constraints at switching instants, consecutive asynchronous subsystem switching caused by LDDAs and USDs is allowed, that is, the subsystem switches several times but the controller switching is blocked by LDDAs and controllers fail to switch correspondingly. Second, mixed event-triggered mechanisms (ETMs), combining event-triggered conditions and periodic sampling conditions, are designed to reduce network burden under LDDAs and improve system performance subject to destabilizing switching. Then, an improved DT for switching signal permits irregular arrangement of destabilizing and stabilizing switching and is more suitable for NSSs subject to LDDAs. Moreover, sufficient conditions ensure the solvability of EORP for NSSs with USDs under LDDAs, network-induced delays, random packet losses, and packet disorders. Finally, a switched RLC circuit shows the feasibility of the proposed method.
本文研究了具有不稳定切换动态(USDs)的网络化切换系统(NSSs)在拒绝服务(DoS)攻击下的事件触发输出调节问题(EORP)。这里的USDs是指每个子系统的输出调节不可解以及在部分切换时刻出现不稳定,这意味着李雅普诺夫函数在每个子系统的激活区间内并非单调递减,而是在部分切换时刻增加。首先,考虑长持续时间DoS攻击(LDDAs),其中LDDAs意味着其持续时间可能长于几个相邻激活子系统的总驻留时间(DT)。通过在切换时刻施加约束,允许由LDDAs和USDs引起的连续异步子系统切换,即子系统多次切换,但控制器切换被LDDAs阻止,控制器未能相应切换。其次,设计了混合事件触发机制(ETMs),将事件触发条件和周期性采样条件相结合,以减轻LDDAs下的网络负担,并在不稳定切换情况下提高系统性能。然后,针对切换信号的一种改进的DT允许不稳定和稳定切换的不规则排列,并且更适合于受LDDAs影响的NSSs。此外,充分条件确保了在LDDAs、网络诱导延迟、随机数据包丢失和数据包乱序情况下,具有USDs的NSSs的EORP可解。最后,一个开关RLC电路展示了所提方法的可行性。