Suppr超能文献

成人症状性腰椎侧凸中成人脊柱畸形手术结果预测工具的验证。

Validation of Adult Spinal Deformity Surgical Outcome Prediction Tools in Adult Symptomatic Lumbar Scoliosis.

机构信息

Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO.

Department of Orthopaedic Surgery, Rady Children's Hospital, University of California, San Diego, San Diego, CA.

出版信息

Spine (Phila Pa 1976). 2023 Jan 1;48(1):21-28. doi: 10.1097/BRS.0000000000004416. Epub 2022 Jun 29.

Abstract

STUDY DESIGN

A post hoc analysis.

OBJECTIVE

Advances in machine learning (ML) have led to tools offering individualized outcome predictions for adult spinal deformity (ASD). Our objective is to examine the properties of these ASD models in a cohort of adult symptomatic lumbar scoliosis (ASLS) patients.

SUMMARY OF BACKGROUND DATA

ML algorithms produce patient-specific probabilities of outcomes, including major complication (MC), reoperation (RO), and readmission (RA) in ASD. External validation of these models is needed.

METHODS

Thirty-nine predictive factors (12 demographic, 9 radiographic, 4 health-related quality of life, 14 surgical) were retrieved and entered into web-based prediction models for MC, unplanned RO, and hospital RA. Calculated probabilities were compared with actual event rates. Discrimination and calibration were analyzed using receiver operative characteristic area under the curve (where 0.5=chance, 1=perfect) and calibration curves (Brier scores, where 0.25=chance, 0=perfect). Ninety-five percent confidence intervals are reported.

RESULTS

A total of 169 of 187 (90%) surgical patients completed 2-year follow up. The observed rate of MCs was 41.4% with model predictions ranging from 13% to 68% (mean: 38.7%). RO was 20.7% with model predictions ranging from 9% to 54% (mean: 30.1%). Hospital RA was 17.2% with model predictions ranging from 13% to 50% (mean: 28.5%). Model classification for all three outcome measures was better than chance for all [area under the curve=MC 0.6 (0.5-0.7), RA 0.6 (0.5-0.7), RO 0.6 (0.5-0.7)]. Calibration was better than chance for all, though best for RA and RO (Brier Score=MC 0.22, RA 0.16, RO 0.17).

CONCLUSIONS

ASD prediction models for MC, RA, and RO performed better than chance in a cohort of adult lumbar scoliosis patients, though the homogeneity of ASLS affected calibration and accuracy. Optimization of models require samples with the breadth of outcomes (0%-100%), supporting the need for continued data collection as personalized prediction models may improve decision-making for the patient and surgeon alike.

摘要

研究设计

事后分析。

目的

机器学习(ML)的进步带来了提供成人脊柱畸形(ASD)个体化结果预测的工具。我们的目的是在成人症状性腰椎侧凸(ASLS)患者队列中检查这些 ASD 模型的特性。

背景数据概要

ML 算法会生成患者特定的结果概率,包括成人脊柱畸形中的主要并发症(MC)、再次手术(RO)和再入院(RA)。需要对这些模型进行外部验证。

方法

检索了 39 个预测因素(12 个人口统计学因素、9 个影像学因素、4 个健康相关生活质量因素、14 个手术因素),并将其输入用于 MC、计划外 RO 和医院 RA 的基于网络的预测模型。计算出的概率与实际事件发生率进行了比较。使用接收者操作特征曲线下面积(0.5=机会,1=完美)和校准曲线(Brier 分数,0.25=机会,0=完美)分析了区分度和校准度。报告了 95%置信区间。

结果

187 名接受手术的患者中有 169 名(90%)完成了 2 年的随访。观察到的 MC 发生率为 41.4%,模型预测范围为 13%至 68%(平均值:38.7%)。RO 为 20.7%,模型预测范围为 9%至 54%(平均值:30.1%)。医院 RA 的发生率为 17.2%,模型预测范围为 13%至 50%(平均值:28.5%)。对于所有三种结局测量,所有模型的分类都优于机会[MC 下面积为 0.6(0.5-0.7),RA 为 0.6(0.5-0.7),RO 为 0.6(0.5-0.7)]。对于所有结果,校准均优于机会,但 RA 和 RO 的效果最佳(Brier 分数=MC 0.22,RA 0.16,RO 0.17)。

结论

在成人腰椎侧凸患者队列中,MC、RA 和 RO 的 ASD 预测模型的表现优于机会,但 ASLS 的同质性影响了校准和准确性。模型的优化需要具有广泛结局(0%-100%)的样本,这支持继续进行数据收集,因为个性化预测模型可能会提高患者和外科医生的决策能力。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验