Schonfeld Ethan, Pant Aaradhya, Shah Aaryan, Sadeghzadeh Sina, Pangal Dhiraj, Rodrigues Adrian, Yoo Kelly, Marianayagam Neelan, Haider Ghani, Veeravagu Anand
Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA.
Department of Computer Science, Stanford University, Stanford, CA 94304, USA.
J Clin Med. 2024 Jan 23;13(3):656. doi: 10.3390/jcm13030656.
: Adult spinal deformities (ASD) are varied spinal abnormalities, often necessitating surgical intervention when associated with pain, worsening deformity, or worsening function. Predicting post-operative complications and revision surgery is critical for surgical planning and patient counseling. Due to the relatively small number of cases of ASD surgery, machine learning applications have been limited to traditional models (e.g., logistic regression or standard neural networks) and coarse clinical variables. We present the novel application of advanced models (CNN, LLM, GWAS) using complex data types (radiographs, clinical notes, genomics) for ASD outcome prediction. We developed a CNN trained on 209 ASD patients (1549 radiographs) from the Stanford Research Repository, a CNN pre-trained on VinDr-SpineXR (10,468 spine radiographs), and an LLM using free-text clinical notes from the same 209 patients, trained via Gatortron. Additionally, we conducted a GWAS using the UK Biobank, contrasting 540 surgical ASD patients with 7355 non-surgical ASD patients. The LLM notably outperformed the CNN in predicting pulmonary complications (F1: 0.545 vs. 0.2881), neurological complications (F1: 0.250 vs. 0.224), and sepsis (F1: 0.382 vs. 0.132). The pre-trained CNN showed improved sepsis prediction (AUC: 0.638 vs. 0.534) but reduced performance for neurological complication prediction (AUC: 0.545 vs. 0.619). The LLM demonstrated high specificity (0.946) and positive predictive value (0.467) for neurological complications. The GWAS identified 21 significant ( < 10) SNPs associated with ASD surgery risk (OR: mean: 3.17, SD: 1.92, median: 2.78), with the highest odds ratio (8.06) for the LDB2 gene, which is implicated in ectoderm differentiation. This study exemplifies the innovative application of cutting-edge models to forecast outcomes in ASD, underscoring the utility of complex data in outcome prediction for neurosurgical conditions. It demonstrates the promise of genetic models when identifying surgical risks and supports the integration of complex machine learning tools for informed surgical decision-making in ASD.
成人脊柱畸形(ASD)是多种脊柱异常情况,当伴有疼痛、畸形加重或功能恶化时,通常需要进行手术干预。预测术后并发症和翻修手术对于手术规划和患者咨询至关重要。由于ASD手术病例数量相对较少,机器学习应用仅限于传统模型(如逻辑回归或标准神经网络)和粗略的临床变量。我们展示了使用复杂数据类型(X光片、临床记录、基因组学)的先进模型(卷积神经网络、大语言模型、全基因组关联研究)在ASD预后预测中的新应用。我们开发了一个在斯坦福研究库中对209例ASD患者(1549张X光片)进行训练的卷积神经网络,一个在VinDr-SpineXR(10468张脊柱X光片)上预训练的卷积神经网络,以及一个使用来自同一209例患者的自由文本临床记录、通过Gatortron训练的大语言模型。此外,我们利用英国生物银行进行了全基因组关联研究,将540例接受手术的ASD患者与7355例未接受手术的ASD患者进行对比。在预测肺部并发症(F1值:0.545对0.2881)、神经并发症(F1值:0.250对0.224)和败血症(F1值:0.382对0.132)方面,大语言模型的表现明显优于卷积神经网络。预训练的卷积神经网络在败血症预测方面有所改善(曲线下面积:0.638对0.534),但在神经并发症预测方面性能有所下降(曲线下面积:0.545对0.619)。大语言模型在神经并发症方面表现出高特异性(0.946)和阳性预测值(0.467)。全基因组关联研究确定了21个与ASD手术风险相关的显著(<10)单核苷酸多态性(优势比:平均值:3.17,标准差:1.92,中位数:2.78),其中LDB2基因的优势比最高(8.06),该基因与外胚层分化有关。这项研究例证了前沿模型在预测ASD预后方面的创新应用,强调了复杂数据在神经外科疾病预后预测中的作用。它展示了遗传模型在识别手术风险方面的前景,并支持整合复杂的机器学习工具以在ASD中做出明智的手术决策。