Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand.
Laboratory of Theoretical and Computational Biophysics, Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
Biochem Biophys Res Commun. 2022 Sep 10;620:158-164. doi: 10.1016/j.bbrc.2022.06.065. Epub 2022 Jun 30.
The insecticidal nature of Cry δ-endotoxins produced by Bacillus thuringiensis is generally attributed to their ability to form transmembrane pores, causing lysis of target insect cells. Previously, the truncated tertiary structure of the chymotrypsin-treated Cry4Ba toxin lacking the N-terminal helices-α1 and α2 was reported. To elucidate a more complete functional structure, a 65-kDa trypsin-activated form of the Cry4Ba-R203Q mutant toxin was thus generated for X-ray crystallography by eliminating the Arg-tryptic cleavage site. The 2.0 Å crystal structure of Cry4Ba-R203Q with R-factor of 21.5% and R of 23.7.%, as subsequently improved with homology-based modeling and molecular dynamics (MD) simulations, revealed a wedge-shaped arrangement of three domains: a well-defined N-terminal domain of eight α-helices (α1, α2a, α2b, α3, α4, α5, α6 and α7) responsible for pore formation, a three-β-sheet prism displaying two functional motifs and a C-terminal β-sandwich domain. A full-atom structural model of the Cry4Ba pre-pore trimer constructed using a single-particle 3D-reconstructed template revealed that each toxin monomer forms the stable trimer by packing α3 and α4 together at the central interface. When MD simulations of a membrane-associated trimeric pore model comprising three α4-loop-α5 hairpins were performed, an stable open-pore structure at the membrane-water interface was clearly observed. Two conserved side-chains-Asn and Tyr in the α4-α5 loop were found to interact directly with phospholipid head groups, leading to pore opening and stability. Overall data provide the first complete view of the 3D structure of the Cry4Ba mosquito-active toxin and its trimeric pore architecture, underlining the importance of two critical loop residues-Asn and Tyr.
苏云金芽孢杆菌产生的 Cry δ-内毒素的杀虫性质通常归因于其形成跨膜孔的能力,导致靶标昆虫细胞裂解。先前报道了缺失 N 端螺旋-α1 和 α2 的胰凝乳蛋白酶处理的 Cry4Ba 毒素的截短三级结构。为了阐明更完整的功能结构,通过消除 Arg-胰蛋白酶切割位点,生成了 Cry4Ba-R203Q 突变毒素的 65 kDa 胰蛋白酶激活形式,用于 X 射线晶体学。随后通过同源建模和分子动力学 (MD) 模拟对其进行了改进,Cry4Ba-R203Q 的 2.0 Å 晶体结构的 R 因子为 21.5%,R 因子为 23.7%。结果表明,三个结构域呈楔形排列:负责形成孔的八个 α-螺旋(α1、α2a、α2b、α3、α4、α5、α6 和 α7)的明确的 N 端结构域、显示两个功能基序的三-β-片棱柱和 C 端 β-三明治结构域。使用单个粒子 3D 重建模板构建的 Cry4Ba 前孔三聚体的全原子结构模型表明,每个毒素单体通过将 α3 和 α4 一起包装在中央界面上形成稳定的三聚体。当对包含三个α4-环-α5 发夹的膜相关三聚体孔模型进行 MD 模拟时,在膜-水界面上明显观察到稳定的开口孔结构。发现α4-α5 环中的两个保守侧链-天冬酰胺和酪氨酸与磷脂头部基团直接相互作用,导致孔打开和稳定。总体数据提供了 Cry4Ba 杀蚊活性毒素及其三聚体孔结构的首个完整 3D 结构视图,强调了两个关键环残基-天冬酰胺和酪氨酸的重要性。