Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Joliot-Curie St. 6, 141980 Dubna, Russian Federation; Scientific and Technical Center of Radiochemistry and Isotopes Production, Institute of Nuclear Physics, Ibragimov St. 1, 050032 Almaty, Kazakhstan; Department of High-Energy Chemistry and Radioecology, D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russian Federation.
Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, V6T 2A3 Vancouver, Canada.
Nucl Med Biol. 2022 Sep-Oct;112-113:35-43. doi: 10.1016/j.nucmedbio.2022.06.003. Epub 2022 Jun 17.
Targeted Alpha Therapy (TAT) has shown very high potential for the treatment of cancers that were not responsive to other therapy options (e.g., β therapy and chemotherapy). The main constraint to the widespread use of TAT in clinics is the limited availability of alpha-emitting radionuclides. One of the most promising candidates for TAT is Ac (t = 9.92 days), which can be used directly in combination with selective biomolecules (e.g., antibodies, peptides, etc.) or be a generator source of Bi (t = 45.6 min), another shorter-lived TAT radionuclide. Several strategies are currently under investigation to increase the supply of Ac. One of the most attractive options is the irradiation of natural thorium-232 targets with high-energy protons (≥100 MeV). However, there are several challenges associated with this production method including the development of an efficient radiochemical purification method. During irradiation of natural thorium with proton energy above 100 MeV, several Ra isotopes (Ra) are produced. Ra (t = 11.43 days) is used for the treatment of bone metastases and can also be used as a generator source for Pb. Additionally, Ra (t = 14.9 days) can be a valuable source of isotopically pure Ac. In the present work, we address the radiochemical separation aspects of isolating Ac and Ra isotopes from irradiated thorium targets.
靶向 α 疗法 (TAT) 显示出了治疗对其他治疗方法(如 β 疗法和化疗)不敏感的癌症的巨大潜力。TAT 在临床上广泛应用的主要限制是α发射放射性核素的有限可用性。TAT 最有前途的候选物之一是 Ac(t=9.92 天),它可以直接与选择性生物分子(如抗体、肽等)结合使用,也可以作为半衰期更短的 TAT 放射性核素 Bi(t=45.6 分钟)的发生器源。目前正在研究几种增加 Ac 供应的策略。其中最具吸引力的选择之一是用高能质子(≥100 MeV)辐照天然钍-232 靶。然而,这种生产方法存在几个挑战,包括开发有效的放射化学纯化方法。用高于 100 MeV 的质子能量辐照天然钍时,会产生几种 Ra 同位素(Ra)。Ra(t=11.43 天)用于治疗骨转移,也可用作 Pb 的发生器源。此外,Ra(t=14.9 天)可以是同位素纯 Ac 的有价值的来源。在本工作中,我们解决了从辐照的钍靶中分离 Ac 和 Ra 同位素的放射化学分离方面的问题。