Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
National Institute of Immunology, New Delhi 110067, India.
Biochem Pharmacol. 2022 Sep;203:115154. doi: 10.1016/j.bcp.2022.115154. Epub 2022 Jul 5.
The development of resistance to current antimalarial therapies remains a significant source of concern. To address this risk,newdrugswithnoveltargetsin distinct developmental stages ofPlasmodiumparasites are required. In the current study,we have targetedP. falciparumTubulin(PfTubulin)proteins which represent some of thepotentialdrug targetsfor malaria chemotherapy. PlasmodialMicrotubules (MTs) play a crucial role during parasite proliferation, growth, and transmission, which render them highlydesirabletargets for the development ofnext-generation chemotherapeutics. Towards this,we have evaluated the antimalarial activity ofTubulintargetingcompounds received from theMedicines for Malaria Venture (MMV)"Pathogen Box"against the human malaria parasite,P. falciparumincluding 3D7 (chloroquine and artemisinin sensitive strain), RKL-9 (chloroquine-resistant strain), and R539T (artemisinin-resistant strain). At nanomolar concentrations, the filtered-out compounds exhibitedpronouncedmultistage antimalarialeffects across the parasite life cycle, including intra-erythrocytic blood stages, liver stage parasites, gametocytes, and ookinetes. Concomitantly, these compoundswere found toimpedemale gamete ex-flagellation, thus showingtheir transmission-blocking potential. Target mining of these potent compounds, by combining in silico, biochemical and biophysical assays,implicatedPfTubulinas their moleculartarget, which may possibly act bydisruptingMT assembly dynamics by binding at the interface of α-βTubulin-dimer.Further, the promising ADME profile of the parent scaffold supported its consideration as a lead compound for further development.Thus, our work highlights the potential of targetingPfTubulin proteins in discovering and developing next-generation, multistage antimalarial agents against Multi-Drug Resistant (MDR) malaria parasites.
当前抗疟疗法耐药性的发展仍然是一个令人担忧的重要问题。为了应对这一风险,需要开发具有新颖靶点的新药,这些靶点处于疟原虫不同的发育阶段。在本研究中,我们针对恶性疟原虫微管蛋白(PfTubulin)蛋白,这些蛋白是抗疟化疗的潜在药物靶点之一。疟原虫微管(MTs)在寄生虫增殖、生长和传播过程中发挥着至关重要的作用,使其成为下一代化学疗法的理想靶点。为此,我们评估了从疟疾药物基金会(MMV)“病原体盒”获得的针对人类疟原虫 PfTubulin 靶向化合物的抗疟活性,包括 3D7(氯喹和青蒿素敏感株)、RKL-9(氯喹耐药株)和 R539T(青蒿素耐药株)。在纳摩尔浓度下,筛选出的化合物在寄生虫生命周期的多个阶段表现出明显的抗疟作用,包括红内期、肝期寄生虫、配子体和动合子。同时,这些化合物被发现阻碍雄性配子体的出鞭毛,因此显示出它们的传播阻断潜力。通过将计算机模拟、生化和生物物理测定相结合,对这些有效化合物进行靶标挖掘,表明 PfTubulin 是它们的分子靶点,可能通过结合α-β微管蛋白二聚体的界面来破坏 MT 组装动力学。此外,母体支架具有有前途的 ADME 特征,支持将其作为进一步开发的先导化合物。因此,我们的工作强调了针对 PfTubulin 蛋白的潜在价值,可用于发现和开发针对多药耐药(MDR)疟原虫的新一代多阶段抗疟药物。