Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, CNRS, Sorbonne Université, Paris, France.
Département de Parasitologie-Mycologie, UFR des Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire.
Microbiol Spectr. 2021 Oct 31;9(2):e0027421. doi: 10.1128/Spectrum.00274-21. Epub 2021 Sep 29.
Human malaria infection begins with a one-time asymptomatic liver stage followed by a cyclic symptomatic blood stage. For decades, the research for novel antimalarials focused on the high-throughput screening of molecules that only targeted the asexual blood stages. In a search for new effective compounds presenting a triple action against erythrocytic and liver stages in addition to the ability to block the transmission of the disease the mosquito vector, 2-amino-thienopyrimidinone derivatives were synthesized and tested for their antimalarial activity. One molecule, named gamhepathiopine (denoted as "M1" herein), was active at submicromolar concentrations against both erythrocytic (50% effective concentration [EC] = 0.045 μM) and liver (EC = 0.45 μM) forms of Plasmodium falciparum. Furthermore, gamhepathiopine efficiently blocked the development of the sporogonic cycle in the mosquito vector by inhibiting the exflagellation step. Moreover, M1 was active against artemisinin-resistant forms (EC = 0.227 μM), especially at the quiescent stage. Nevertheless, in mice, M1 showed modest activity due to its rapid metabolization by P450 cytochromes into inactive derivatives, calling for the development of new parent compounds with improved metabolic stability and longer half-lives. These results highlight the thienopyrimidinone scaffold as a novel antiplasmodial chemotype of great interest to search for new drug candidates displaying multistage activity and an original mechanism of action with the potential to be used in combination therapies for malaria elimination in the context of artemisinin resistance. This work reports a new chemical structure that (i) displays activity against the human malaria parasite Plasmodium falciparum at 3 stages of the parasitic cycle (blood stage, hepatic stage, and sexual stages), (ii) remains active against parasites that are resistant to the first-line treatment recommended by the World Health Organization (WHO) for the treatment of severe malaria (artemisinins), and (iii) reduces transmission of the parasite to the mosquito vector in a mouse model. This new molecule family could open the way to the conception of novel antimalarial drugs with an original multistage mechanism of action to fight against drug resistance and block interhuman transmission of malaria.
人类疟疾感染始于一次性无症状的肝脏期,随后是周期性有症状的血液期。几十年来,新型抗疟药物的研究重点是高通量筛选仅针对无性血期的分子。为了寻找新的有效化合物,除了能够阻断蚊子媒介传播疾病的能力外,还具有针对红细胞期和肝脏期的三重作用,合成了 2-氨基噻吩并嘧啶酮衍生物,并对其抗疟活性进行了测试。一种名为 gamhepathiopine(本文中表示为“M1”)的分子,在亚微摩尔浓度下对红细胞(50%有效浓度 [EC] = 0.045 μM)和肝脏(EC = 0.45 μM)形式的恶性疟原虫均具有活性。此外,gamhepathiopine 通过抑制出芽步骤有效地阻断了蚊子媒介中的孢子发生周期的发展。此外,M1 对青蒿素耐药形式(EC = 0.227 μM)具有活性,尤其是在静止期。然而,在小鼠中,由于其被 P450 细胞色素快速代谢为无活性衍生物,M1 的活性中等,这需要开发具有改进的代谢稳定性和更长半衰期的新型母体化合物。这些结果突出了噻吩并嘧啶酮支架作为一种新型的抗疟化学型,对于寻找具有多阶段活性和原始作用机制的新型候选药物具有极大的兴趣,这些药物有可能在青蒿素耐药的情况下用于疟疾消除的联合治疗。本工作报道了一种新的化学结构,该结构(i)在寄生虫周期的 3 个阶段(血液阶段、肝阶段和性阶段)对人类疟原虫 Plasmodium falciparum 具有活性,(ii)对世界卫生组织(WHO)推荐的一线治疗耐药的寄生虫仍具有活性(青蒿素类药物),(iii)在小鼠模型中减少寄生虫向蚊子媒介的传播。这种新的分子家族可能为设计具有原始多阶段作用机制的新型抗疟药物开辟道路,以对抗耐药性并阻断疟疾在人际间的传播。