Tang Zhenbin, Dai Juguo, Wei Wenkang, Gao Zhi, Liang Zhixuan, Wu Chenzhi, Zeng Birong, Xu Yiting, Chen Guorong, Luo Weiang, Yuan Conghui, Dai Lizong
College of Materials, Xiamen University, Xiamen, 361005, P. R. China.
Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, P. R. China.
Adv Sci (Weinh). 2022 Aug;9(24):e2201685. doi: 10.1002/advs.202201685. Epub 2022 Jul 7.
Stimuli-responsive supercapacitors have attracted broad interest in constructing self-powered smart devices. However, due to the demand for high cyclic stability, supercapacitors usually utilize stable or inert electrode materials, which are difficult to exhibit dynamic or stimuli-responsive behavior. Herein, this issue is addressed by designing a MoS @carbon core-shell structure with ultrathin MoS nanosheets incorporated in the carbon matrix. In the three-electrode system, MoS @carbon delivers a specific capacitance of 1302 F g at a current density of 1.0 A g and shows a 90% capacitance retention after 10 000 charging-discharging cycles. The MoS @carbon-based asymmetric supercapacitor displays an energy density of 75.1 Wh kg at the power density of 900 W kg . Because the photo-generated electrons can efficiently migrate from MoS nanosheets to the carbon matrix, the assembled photo-responsive supercapacitor can answer the stimulation of ultraviolet-visible-near infrared illumination by increasing the capacitance. Particularly, under the stimulation of UV light (365 nm, 0.08 W cm ), the device exhibits a ≈4.50% (≈13.9 F g ) increase in capacitance after each charging-discharging cycle. The study provides a guideline for designing multi-functional supercapacitors that serve as both the energy supplier and the photo-detector.
刺激响应型超级电容器在构建自供电智能设备方面引起了广泛关注。然而,由于对高循环稳定性的要求,超级电容器通常使用稳定或惰性的电极材料,这些材料难以表现出动态或刺激响应行为。在此,通过设计一种在碳基质中掺入超薄MoS纳米片的MoS@碳核壳结构来解决这一问题。在三电极体系中,MoS@碳在1.0 A g的电流密度下具有1302 F g的比电容,并且在10000次充放电循环后电容保持率为90%。基于MoS@碳的不对称超级电容器在900 W kg的功率密度下显示出75.1 Wh kg的能量密度。由于光生电子可以有效地从MoS纳米片迁移到碳基质中,组装的光响应超级电容器可以通过增加电容来响应紫外-可见-近红外光照的刺激。特别是,在紫外光(365 nm,0.08 W cm)的刺激下,该器件在每次充放电循环后电容增加约4.50%(约13.9 F g)。该研究为设计兼具能量供应器和光探测器功能的多功能超级电容器提供了指导。